% Copyright 1989 by Norman Ramsey, Odyssey Research Associates % Not to be sold, but may be used freely for any purpose % For more information, see file COPYRIGHT in the parent directory % This file is part of Spidery WEB % This program by Norman Ramsey is based on programs Silvio Levy % and D. E. Knuth. Silvio Levy wrote most of the code. % It is distributed WITHOUT ANY WARRANTY, express or implied. % Dec 1987 % Here is TeX material that gets inserted after \input webmac \message{OK, entering \string\batchmode...} \batchmode \def\hang{\hangindent 3em\indent\ignorespaces} \font\ninerm=cmr9 \let\mc=\ninerm % medium caps \def\cee{C} \def\pb{$\.|\ldots\.|$} % C brackets (|...|) \def\v{\char'174} % vertical (|) in typewriter font \def\ceeref{{\it The C Reference Manual}} \mathchardef\RA="3221 % right arrow \mathchardef\BA="3224 % double arrow \def\title{Spidery TANGLE} \def\contentspagenumber{1} % should be odd \def\topofcontents{\null\vfill \titlefalse % include headline on the contents page \def\rheader{\hfil} \centerline{\titlefont The {\ttitlefont Spidery TANGLE} processor} \vfill } @* Introduction. \.{TANGLE} has a fairly straightforward outline. It operates in two phases: first it reads the source file, saving the \cee\ code in compressed form; then outputs the code, after shuffling it around. It can be compiled with certain optional flags, |DEBUG| and |STAT|, the latter being used to keep track of how much of \.{TANGLE}'s resources were actually used. @u @@; @@; @@; @@; main (ac, av) char **av; { argc=ac; argv=av; program=tangle; @; common_init(); printf(banner); /* print a ``banner line'' */ phase_one(); /* read all the user's text and compress it into |tok_mem| */ phase_two(); /* output the contents of the compressed tables */ wrap_up(); } @ The following parameters were sufficient in the original \.{TANGLE} to handle \TeX, so they should be sufficient for most applications of \.{TANGLE}. If you change |max_bytes|, |max_names| or |hash_size| you should also change them in the file |"common.web"|. @d max_bytes = 90000 /* the number of bytes in identifiers, index entries, and module names; used in |"common.web"| */ @d max_toks = 150000 /* number of bytes in compressed \cee\ code */ @d max_names = 4000 /* number of identifiers, strings, module names; must be less than 10240; used in |"common.web"| */ @d max_texts = 2000 /* number of replacement texts, must be less than 10240 */ @d hash_size = 353 /* should be prime; used in |"common.web"| */ @d longest_name = 400 /* module names shouldn't be longer than this */ @d stack_size = 50 /* number of simultaneous levels of macro expansion */ @d buf_size = 100 /* for \.{WEAVE} and \.{TANGLE} */ @i common.h @ Should include tlang.web but can't because AWK runs out of files. @* Data structures exclusive to {\tt TANGLE}. We've already seen that the |byte_mem| array holds the names of identifiers, strings, and modules; the |tok_mem| array holds the replacement texts for modules. Allocation is sequential, since things are deleted only during Phase II, and only in a last-in-first-out manner. A \&{text} variable is a structure containing a pointer into |tok_mem|, which tells where the corresponding text starts, and an integer |text_link|, which, as we shall see later, is used to connect pieces of text that have the same name. All the \&{text}s are stored in the array |text_info|, and we use a |text_pointer| variable to refer to them. The first position of |tok_mem| that is unoccupied by replacement text is called |tok_ptr|, and the first unused location of |text_info| is called |text_ptr|. Thus we usually have the identity |text_ptr->tok_start=tok_ptr|. If your machine does not support |char unsigned| you should change the definition of \&{eight\_bits} to |short unsigned|. @^system dependencies@> @= typedef struct { eight_bits *tok_start; /* pointer into |tok_mem| */ sixteen_bits text_link; /* relates replacement texts */ } text; typedef text *text_pointer; @ @= text text_info[max_texts]; text_pointer text_info_end=text_info+max_texts-1; text_pointer text_ptr; /* first unused position in |text_info| */ eight_bits tok_mem[max_toks]; eight_bits *tok_mem_end=tok_mem+max_toks-1; eight_bits *tok_ptr; /* first unused position in |tok_mem| */ @ @= text_info->tok_start=tok_ptr=tok_mem; text_ptr=text_info+1; text_ptr->tok_start=tok_mem; /* this makes replacement text 0 of length zero */ @ If |p| is a pointer to a module name, |p->equiv| is a pointer to its replacement text, an element of the array |text_info|. @d equiv = equiv_or_xref /* info corresponding to names */ @ @= name_dir->equiv=(ASCII *)text_info; /* the undefined module has no replacement text */ @ Here's the procedure that decides whether a name of length |l| starting at position |first| equals the identifier pointed to by |p|: @u names_match(p,first,l) name_pointer p; /* points to the proposed match */ ASCII *first; /* position of first character of string */ int l; /* length of identifier */ { if (length(p)!=l) return 0; return !strncmp(first,p->byte_start,l); } @ @u init_node(node) name_pointer node; { node->equiv=(ASCII *)text_info; } init_p(p,t) name_pointer p; eight_bits t; { p->ilk=t; } @*Tokens. Replacement texts, which represent \cee\ code in a compressed format, appear in |tok_mem| as mentioned above. The codes in these texts are called `tokens'; some tokens occupy two consecutive eight-bit byte positions, and the others take just one byte. If $p$ points to a replacement text, |p->tok_start| is the |tok_mem| position of the first eight-bit code of that text. If |p->text_link=0|, this is the replacement text for a macro, otherwise it is the replacement text for a module. In the latter case |p->text_link| is either equal to |module_flag|, which means that there is no further text for this module, or |p->text_link| points to a continuation of this replacement text; such links are created when several modules have \cee\ texts with the same name, and they also tie together all the \cee\ texts of unnamed modules. The replacement text pointer for the first unnamed module appears in |text_info->text_link|, and the most recent such pointer is |last_unnamed|. @d module_flag = max_texts /* final |text_link| in module replacement texts */ @= text_pointer last_unnamed; /* most recent replacement text of unnamed module */ @ @= last_unnamed=text_info; text_info->text_link=0; @ If the first byte of a token is less than |@'200|, the token occupies a single byte. Otherwise we make a sixteen-bit token by combining two consecutive bytes |a| and |b|. If |@'200<=a<@'250|, then |(a-@'200)@t${}\times2^8$@>+b| to an identifier; if |@'250<=a<@'320|, then |(a-@'250)@t${}\times2^8$@>+b| points to a module name; otherwise, i.e., if |@'320<=a<@'400|, then |(a-@'320)@t${}\times2^8$@>+b| is the number of the module in which the current replacement text appears. Codes less than @'200 are 7-bit ASCII codes that represent themselves. In particular, a single-character identifier like `|x|' will be a one-byte token, while all longer identifiers will occupy two bytes. Some of the 7-bit ASCII codes will not be present, however, so we can use them for special purposes. The following symbolic names are used: \yskip \hang |join| denotes the concatenation of adjacent items with no space or line breaks allowed between them (the \.{@@\&} operation of \.{WEB}). \hang |string| denotes the beginning or end of a string, verbatim construction or numerical constant. @^ASCII code@> @d string = @'2 @d param = @'7 @d join = @'177 /* ASCII delete will not appear */ @ The following procedure is used to enter a two-byte value into |tok_mem| when a replacement text is being generated. @u store_two_bytes(x) sixteen_bits x; { if (tok_ptr+2>tok_mem_end) overflow("token"); *tok_ptr++=x>>8; /* store high byte */ *tok_ptr++=x&@'377; /* store low byte */ } @* Stacks for output. The output process uses a stack to keep track of what is going on at different ``levels'' as the modules are being written out. Entries on this stack have five parts: \yskip\hang |end_field| is the |tok_mem| location where the replacement text of a particular level will end; \hang |byte_field| is the |tok_mem| location from which the next token on a particular level will be read; \hang |name_field| points to the name corresponding to a particular level; \hang |repl_field| points to the replacement text currently being read at a particular level. \hang |mod_field| is the module number, or zero if this is a macro. \yskip\noindent The current values of these five quantities are referred to quite frequently, so they are stored in a separate place instead of in the |stack| array. We call the current values |cur_end|, |cur_byte|, |cur_name|, |cur_repl|, and |cur_mod|. The global variable |stack_ptr| tells how many levels of output are currently in progress. The end of all output occurs when the stack is empty, i.e., when |stack_ptr=stack|. @= typedef struct { eight_bits *end_field; /* ending location of replacement text */ eight_bits *byte_field; /* present location within replacement text */ name_pointer name_field; /* |byte_start| index for text being output */ text_pointer repl_field; /* |tok_start| index for text being output */ sixteen_bits mod_field; /* module number or zero if not a module */ } output_state; typedef output_state *stack_pointer; @ @d cur_end = cur_state.end_field /* current ending location in |tok_mem| */ @d cur_byte = cur_state.byte_field /* location of next output byte in |tok_mem|*/ @d cur_name = cur_state.name_field /* pointer to current name being expanded */ @d cur_repl = cur_state.repl_field /* pointer to current replacement text */ @d cur_mod = cur_state.mod_field /* current module number being expanded */ @= output_state cur_state; /* |cur_end|, |cur_byte|, |cur_name|, |cur_repl| and |cur_mod| */ output_state stack[stack_size+1]; /* info for non-current levels */ stack_pointer stack_ptr; /* first unused location in the output state stack */ stack_pointer stack_end=stack+stack_size; /* end of |stack| */ @ To get the output process started, we will perform the following initialization steps. We may assume that |text_info->text_link| is nonzero, since it points to the \cee\ text in the first unnamed module that generates code; if there are no such modules, there is nothing to output, and an error message will have been generated before we do any of the initialization. @= stack_ptr=stack+1; cur_name=name_dir; cur_repl=text_info->text_link+text_info; cur_byte=cur_repl->tok_start; cur_end=(cur_repl+1)->tok_start; cur_mod=0; @ When the replacement text for name |p| is to be inserted into the output, the following subroutine is called to save the old level of output and get the new one going. We assume that the C compiler can copy structures. @^system dependencies@> @u push_level(p) /* suspends the current level */ name_pointer p; { @; if (stack_ptr==stack_end) overflow("stack"); *stack_ptr=cur_state; stack_ptr++; cur_name=p; cur_repl=(text_pointer)p->equiv; cur_byte=cur_repl->tok_start; cur_end=(cur_repl+1)->tok_start; cur_mod=0; } @ @= #ifdef TRACE_MACROS if (tracing>0) { printf("\nPushing "); print_id(p); printf(" =nd[%d]",p-name_dir); } #endif TRACE_MACROS @ When we come to the end of a replacement text, the |pop_level| subroutine does the right thing: It either moves to the continuation of this replacement text or returns the state to the most recently stacked level. If this level is the end of a macro definition, it pops all the parameters off the stack. @u pop_level() /* do this when |cur_byte| reaches |cur_end| */ { int number_of_parameters; @; if (cur_repl->text_link==0) { /* macro definition */ if (cur_name->ilk==macro) { @; } } else if (cur_repl->text_linktext_link+text_info; /* stay on the same level */ cur_byte=cur_repl->tok_start; cur_end=(cur_repl+1)->tok_start; return; } stack_ptr--; /* go down to the previous level */ if (stack_ptr>stack) cur_state=*stack_ptr; } @ @= number_of_parameters=*(cur_repl->tok_start); @; while (number_of_parameters-->0) { name_ptr--; text_ptr--; #ifdef TRACE_MACROS byte_ptr-=2; #endif TRACE_MACROS } #ifdef STAT #ifdef STAT_HAS_BEEN_FIXED if (tok_ptr>max_tok_ptr) max_tok_ptr = tok_ptr; /* maximum value of |tok_ptr| occurs just before parameter popping */ #endif STAT_HAS_BEEN_FIXED #endif STAT tok_ptr = text_ptr->tok_start; @ @= #ifdef TRACE_MACROS if (tracing>1) { printf("\nUnstacking %d parameters",number_of_parameters); } #endif TRACE_MACROS @ @= #ifdef TRACE_MACROS if (tracing>0) { printf("\nPopping "); print_id(cur_name); printf(" =nd[%d]",cur_name-name_dir); } #endif TRACE_MACROS @*1 Expanding macros. The heart of the output procedure is the |get_output| routine, which produces the next token of output that is not a reference to a macro. This procedure handles all the stacking and unstacking that is necessary. @ Before we can get on to |get_output|, we have to talk about expanding macros. Macro parameters must be stacked. They are placed in |tok_mem| just above the other replacement texts, and dummy parameter ``names'' are placed in |byte_start| just after the other names. The variables |text_ptr| and |tok_ptr| essentially serve as parameter stack pointers during the output phase, so there is no need for a separate data structure to handle this problem. @ Here are our invariants (assuming $\#$ represents |param|): (1) in a replacement text, $\#n$ always refers to |*(name_ptr-n)|. (2) when a parameter is scanned, any $\#n$ are replaced with references to the appropriate name, so that the replacement text for a parameter never contains a $\#n$. (3) |name_ptr| is not changed until all the parameters are scanned; otherwise invariant (1) wouldn't work during parameter scanning. (4) when all parameters are scanned, |name_ptr| is moved so that $\#n$ in the replacement text will be interpreted correctly. (5) When we have finished scanning the replacement text for a macro, we have to pop |name_ptr| to maintain the invariant in (1). @ |get_output| returns the value |module_number| if the next output begins or ends the replacement text of some module, in which case |cur_val| is that module's number (if beginning) or the negative of that value (if ending). (A module number of 0 indicates not the beginning or ending of a module, but a \&{\#line} command.) And it returns the value |identifier| if the next output is an identifier of length two or more, in which case |cur_val| points to that identifier name. @d module_number = @'201 /* code returned by |get_output| for module numbers */ @d identifier = @'202 @= int cur_val; /* additional information corresponding to output token */ @ If |get_output| finds that no more output remains, it returns the value zero. @u sixteen_bits get_output() /* returns next token after macro expansion */ { sixteen_bits a; /* value of current byte */ restart: if (stack_ptr==stack) return 0; if (cur_byte==cur_end) { cur_val=-((int)cur_mod); /* cast needed because of sign extension */ pop_level(); if (cur_val==0) goto restart; out_char(module_number); return; } a=*cur_byte++; if (a<@'200) if(a==param) { @; @; } else out_char(a); /* one-byte token */ else { a=(a-@'200)*@'400+*cur_byte++; switch (a/@'24000) { /* |@'24000=(@'250-@'200)*@'400| */ case 0: @; cur_val=a; out_char(identifier); break; case 1: @; default: cur_val=a-@'50000; if (cur_val>0) cur_mod=cur_val; out_char(module_number); } } return 1; } @ @= push_level(name_ptr-*cur_byte++); goto restart; @ @= #ifdef TRACE_MACROS if (tracing>2) { printf (" [#%d]",*cur_byte); } #endif TRACE_MACROS @ @= if (name_dir[a].ilk==macro) { @; @; push_level(name_dir+a); cur_byte++; /* skip number of parameters */ goto restart; } else if (name_dir[a].ilk==simple) { @; push_level(name_dir+a); goto restart; } @ @= #ifdef TRACE_MACROS if (tracing>2) { printf("\nExpanding macro ("); print_id(name_dir+a); printf("=nd[%d])",a); } #endif TRACE_MACROS @ @= #ifdef TRACE_MACROS if (tracing>2) { printf("\nExpanding parameter ("); print_id(name_dir+a); printf("=nd[%d])",a); } #endif TRACE_MACROS @ @= {int number_of_parameters; while (cur_byte==cur_end && stack_ptr>stack) pop_level(); number_of_parameters = *(((text_pointer)name_dir[a].equiv)->tok_start); if (number_of_parameters>0) { if (stack_ptr==stack || *cur_byte!=@`(') { printf("\n! No parameters given for "); print_id(a+name_dir); err_print(""); goto restart; } cur_byte++; /* skip left parenthesis */ parm_ptr = name_ptr; /* maintain |name_ptr| invariant */ while (number_of_parameters-->0) { @; } name_ptr=parm_ptr; /* we are about to |push_level|, so this maintains the |name_ptr| invariant */ } } @ In scanning parameter lists, we require that parameters be separated by commas, and that parentheses balance in parameters. The balancing is done with the array |balances|, and {\tt SPIDER} could easily be extended to make certain tokens {\tt balance left} and other tokens {\tt balance right}, so that {\tt left} and {\tt right} tokens balance in parameters. @ @= short balances[@'200]; @ @= { int i; for (i=0;i<@'200;i++) balances[i]=0; @; } @ Eventually we will want {\tt SPIDER} to set balances. For now let's try just tossing in parenthesis, braces, and square brackets. @= balances[@`(']=1; balances[@`)']=-1; balances[@`[']=1; balances[@`]']=-1; balances[@`{']=1; balances[@`}']=-1; @ @= { int bal; /* used to balance parentheses in parameter lists */ eight_bits b, oldb; sixteen_bits c; bal=0; @; while (1) { b=*cur_byte++; if (b==param) { /* convert to name reference */ b=*cur_byte++; @; c=name_ptr-name_dir-b; /* |name_ptr-b| points to parm */ app_repl(@'200 + (c/@'400)); app_repl(c % @'400); } else { if (b>=@'200) { @; app_repl(b); b=*cur_byte++; } else if (bal==0 && ((number_of_parameters==0 && b==@`)') || (number_of_parameters>0 && b==@`,'))) { goto done; } else if (@<|b| opens verbatim or string@>) { @; } else { @; bal += balances[b]; } app_repl(b); } } done: parm_ptr->equiv=(ASCII *)text_ptr; text_ptr->text_link=0; /* label a macro */ parm_ptr->ilk=simple; /* treat parm \# like simple macro */ #ifdef TRACE_MACROS if(byte_ptr+2>=byte_mem_end) overflow("byte memory"); *byte_ptr++=@`#'; *byte_ptr++=number_of_parameters+1+@`0'; #endif TRACE_MACROS if (parm_ptr>=name_dir_end) overflow ("name"); (++parm_ptr)->byte_start=byte_ptr; if (text_ptr>=text_info_end) overflow("text"); (++text_ptr)->tok_start=tok_ptr; @; } @ @= name_pointer parm_ptr; /* used while stacking parameters */ @ @<|b| opens verbatim or string@>=(b==string||b==constant) @ @= app_repl(b); oldb=b; @; while((b=*cur_byte++)!=oldb) { @; app_repl(b); if (cur_byte>=cur_end) confusion("string or constant didn't end in token list"); } @"| (|#ifdef TRACE_MACROS|)@>; @ @= #ifdef TRACE_MACROS if(tracing>2) printf(" <"); #endif TRACE_MACROS @ @= #ifdef TRACE_MACROS if (tracing>2) printf("%c",b); #endif TRACE_MACROS @ @"| (|#ifdef TRACE_MACROS|)@>= #ifdef TRACE_MACROS if(tracing>2) printf(">"); #endif TRACE_MACROS @ @= #ifdef TRACE_MACROS if (tracing>2) { printf (" <#%d=",b); print_id(name_ptr-b); printf("=nd[%d]>", name_ptr-b-name_dir); } #endif TRACE_MACROS @ @= #ifdef TRACE_MACROS if (tracing>2) { int c; printf (" <"); c=(b-@'200)*@'400+*cur_byte; switch (c/@'24000) { case 0: print_id(name_dir+c); printf(" =nd[%d]",c); break; case 1: printf("MODULE"); break; default: printf("CONTEXT"); break; } printf(">"); } #endif TRACE_MACROS @ @= #ifdef TRACE_MACROS if (tracing>2) { printf (" <"); if (@'37"); } #endif TRACE_MACROS @ @= #ifdef TRACE_MACROS if (tracing>2) { printf ("\nScanning #%d...", number_of_parameters+1); } #endif TRACE_MACROS @ @= #ifdef TRACE_MACROS if (tracing>1) { printf ("\nStacked "); print_id(parm_ptr-1); printf ("=nd[%d]", parm_ptr-1-name_dir); } #endif TRACE_MACROS @ The user may have forgotten to give any \cee\ text for a module name, or the \cee\ text may have been associated with a different name by mistake. @= a-=@'24000; if ((a+name_dir)->equiv!=(ASCII *)text_info) push_level(a+name_dir); else if (a!=0) { printf("\n! Not present: <"); print_id(a+name_dir); err_print(">"); @.Not present:
@> } goto restart; @* Producing the output. The |get_output| routine above handles most of the complexity of output generation, but there is one further consideration that has a nontrivial effect on \.{TANGLE}'s algorithms. Namely, we want to make sure that the output has spaces and line breaks in the right places (e.g., not in the middle of a string or a constant or an identifier, not at a `\.{@@\&}' position where quantities are being joined together, and certainly after a \.= because the C compiler thinks \.{=-} is ambiguous). The output process can be in one of following states: \yskip\hang |num_or_id| means that the last item in the buffer is a number or identifier, hence a blank space or line break must be inserted if the next item is also a number or identifier. \yskip\hang |unbreakable| means that the last item in the buffer was followed by the \.{@@\&} operation that inhibits spaces between it and the next item. \yskip\hang |verbatim| means we're copying only character tokens, and that they are to be output exactly as stored. This is the case during strings, verbatim constructions and numerical constants. \yskip\hang |misc| means none of the above. \yskip Furthermore, if the variable |protect| is positive, new-lines are preceded by a `\.\\'.% note this for /*spider*/ @d misc = 0 /* ``normal'' state */ @d num_or_id = 1 /* state associated with numbers and identifiers */ @d unbreakable = 3 /* state associated with \.{@@\&} */ @d verbatim = 4 /* state in the middle of a string */ @= eight_bits out_state; /* current status of partial output */ boolean protect; /* current status of partial output */ @ Here is a routine that is invoked when we want to output the current line. During the output process, |cur_line| equals the number of the next line to be output. @u flush_buffer() /* writes one line to output file */ { C_putc('\n'); if (cur_line % 100 == 0) { printf("."); if (cur_line % 500 == 0) printf("%d",cur_line); update_terminal; /* progress report */ } cur_line++; } @* The big output switch. Here then is the routine that does the output. We have made some modifications to \.{TANGLE} so it will write output on multiple files. We do this very simply: if a module name is introduced by \.{@@(} instead of \.{@@<}, we treat it as the name of a file. All these special modules are saved on a stack, |output_files|. We write them out after we've done the unnamed module. @d max_files = 256 @= name_pointer output_files[max_files]; name_pointer *cur_out_file, *end_output_files, *an_output_file; char cur_module_char; /* is it |'<'| or |'('| */ char output_file_name[longest_name]; /* name of the file */ @ We make |end_output_files| point jsut beyond the end of |output_files|. |cur_out_file| starts out there. Every time we see a new file, we decrement |cur_out_file| and then write it in. @= cur_out_file=end_output_files=output_files+max_files; @ @= { if (cur_out_file>output_files) { for (an_output_file=cur_out_file; an_output_filetext_link==0) { if(end_output_files==cur_out_file) { printf("\n! No program text was specified."); mark_harmless; @.No output was specified@> } } else { printf("\nWriting the output files: (%s)",C_file_name); update_terminal; @; while (stack_ptr>stack) get_output(); flush_buffer(); } if (end_output_files>cur_out_file) { if(text_info->text_link==0) { printf("\nWriting the output files: "); update_terminal; } @@; } printf("\nDone."); } @ To write the named output files, we proceed as for the unnamed module. The only subtlety is that we have to open each one. @= for (an_output_file=end_output_files; an_output_file>cur_out_file;) { an_output_file--; strncpy(output_file_name,(*an_output_file)->byte_start, longest_name); output_file_name[length(*an_output_file)]='\0'; fclose(C_file); C_file=fopen(output_file_name,"w"); if (C_file == NULL) { fatal("! Cannot open output file:",output_file_name)@; } else { printf(" (%s)",output_file_name); update_terminal; } stack_ptr=stack+1; cur_name= (*an_output_file); cur_repl= (text_pointer) cur_name->equiv_or_xref; cur_byte=cur_repl->tok_start; cur_end=(cur_repl+1)->tok_start; cur_mod=0; while (stack_ptr > stack) get_output(); flush_buffer(); } @ A many-way switch is used to send the output: @u out_char(cur_char) eight_bits cur_char; { ASCII *j; /* pointer into |byte_mem| */ @; switch (cur_char) { case @`\n': if (protect) C_putc(' '); /*spider*/ if (protect || out_state==verbatim) C_putc('\\'); /*spider*/ /*spider*/ /*may need to escape newlines*/ flush_buffer(); if (out_state!=verbatim) out_state=misc; break; @/@t\4@>@; @/@t\4@>@; @@; case join: out_state=unbreakable; break; case constant: if (out_state==verbatim) { out_state=num_or_id; break; } if(out_state==num_or_id) C_putc(' '); out_state=verbatim; break; case string: if (out_state==verbatim) out_state=misc; else out_state=verbatim; break; default: C_putc(cur_char); if (out_state!=verbatim) out_state=misc; break; } } @ @= #ifdef TRACE_MACROS if (tracing>2) { switch(cur_char) { case @`\n': printf(" [\\n]"); break; case string: printf( "[STRING]"); break; case join: printf( "[JOIN]"); break; case constant: printf( "[CONSTANT]"); break; case identifier: printf (" ["); print_id(cur_val+name_dir); printf("]"); break; case module_number: if (cur_val>0) { printf(" [%d:]", cur_val); } else if(cur_val<0) { printf(" [:%d]", - cur_val); } else { printf( "[LINE NUMBER]"); } break; default: if (@'37= case identifier: if (out_state==num_or_id) C_putc(' '); for (j=(cur_val+name_dir)->byte_start; j<(name_dir+cur_val+1)->byte_start; j++) C_putc(*j); out_state=num_or_id; break; @ @= case module_number: if (cur_val>0) { C_printf("%s",begin_comment_string); C_printf("%d:",cur_val); C_printf("%s",end_comment_string); } else if(cur_val<0) { C_printf("%s",begin_comment_string); C_printf(":%d",-cur_val); C_printf("%s",end_comment_string); } else { sixteen_bits a; a=@'400* *cur_byte++; a+=*cur_byte++; /* gets the line number */ C_printf("\n%s",sharp_line_open); C_printf(" %d \"",a); cur_val=*cur_byte++; cur_val=@'400*(cur_val-@'200)+ *cur_byte++; /* points to the file name */ for (j=(cur_val+name_dir)->byte_start; j<(name_dir+cur_val+1)->byte_start; j++) C_putc(*j); C_printf("\"%s\n",sharp_line_close); } break; @i outtoks.web @* Introduction to the input phase. We have now seen that \.{TANGLE} will be able to output the full \cee\ program, if we can only get that program into the byte memory in the proper format. The input process is something like the output process in reverse, since we compress the text as we read it in and we expand it as we write it out. There are three main input routines. The most interesting is the one that gets the next token of a \cee\ text; the other two are used to scan rapidly past \TeX\ text in the \.{WEB} source code. One of the latter routines will jump to the next token that starts with `\.{@@}', and the other skips to the end of a \cee\ comment. @ Control codes in \.{WEB} begin with `\.{@@}', and the next character identifies the code. Some of these are of interest only to \.{WEAVE}, so \.{TANGLE} ignores them; the others are converted by \.{TANGLE} into internal code numbers by the |control_code| table below. The ordering of these internal code numbers has been chosen to simplify the program logic; larger numbers are given to the control codes that denote more significant milestones. @d ignore = 0 /* control code of no interest to \.{TANGLE} */ @d octal = @'5 @d hex = @'6 @d trace = @'370 @d ascii_constant = @'371 /* control code for `\.{@@`}' */ @d control_text = @'372 /* control code for `\.{@@t}', `\.{@@\^}', etc. */ @d format = @'373 /* control code for `\.{@@f}' */ @d definition = @'374 /* control code for `\.{@@d}' */ @d begin_unnamed = @'375 /* control code for `\.{@@u}' */ @d module_name = @'376 /* control code for `\.{@@<}' */ @d new_module = @'377 /* control code for `\.{@@\ }' and `\.{@@*}' */ @= eight_bits ccode[128]; /* meaning of a char following \.{@@} */ @ @= { int c; /* must be |int| so the |for| loop will end */ for (c=0; c<=127; c++) ccode[c]=ignore; ccode[' ']=ccode[tab_mark]=ccode['*']=new_module; ccode ['@@'] = '@@'; ccode['=']=string; ccode['d']=ccode['D']=definition; ccode['f']=ccode['F']=format; ccode['c']=ccode['C']=begin_unnamed; ccode['u']=ccode['U']=begin_unnamed; ccode['^']=ccode[':']=ccode['.']=ccode['t']=ccode['T']=control_text; ccode['&']=join; ccode['<']=ccode['(']=module_name; ccode['`']=ascii_constant; ccode['\'']=octal; ccode['"']=hex; /*Now adjust for |at_sign|... if it is @@, we have no-op followed by quoting */ /* ... but if it is other, say \#, then \#@@ replaces @@\#, and \#\# quotes itself*/ ccode['@@']=ccode[at_sign]; ccode[at_sign]=at_sign; #ifdef DEBUG ccode['0']=ccode['1']=ccode['2']=ccode['3']=ccode['4']=trace; #endif DEBUG } @ We may want some sort of tracing facility: @=short tracing; @ @=tracing=0; @ The |skip_ahead| procedure reads through the input at fairly high speed until finding the next non-ignorable control code, which it returns. @u eight_bits skip_ahead() /* skip to next control code */ { eight_bits c; /* control code found */ while (1) { if (loc>limit && (get_line()==0)) return(new_module); *(limit+1)=at_sign; while (*loc!=at_sign) loc++; if (loc<=limit) { loc++; c=ccode[*loc]; #ifdef DEBUG if (c==trace) { tracing=*loc-@`0'; c=ignore; } #endif DEBUG loc++; if (c!=ignore || *(loc-1)=='>') return(c); } } } @ The |skip_comment| procedure reads through the input at somewhat high speed until finding the end-comment token \.{*/} or a new-line, in which case |skip_comment| will be called again by |get_next|, since the comment is not finished. This is done so that the each newline in the C part of a module is copied to the output; otherwise the \&{\#line} commands inserted into the C file by the output routines become useless. If it comes to the end of the module it prints an error message. @= boolean comment_continues=0; /* are we scanning a comment? */ @ @u skip_comment() /* skips over comments */ { ASCII c; /* current character */ if (comments_end_with_newline) { get_line(); return (comment_continues=0); } else { while (1) {/*spider*/ /* fix this to recognize end ok */ if (loc>limit) if(get_line()) return(comment_continues=1); else{ err_print("! Input ended in mid-comment"); @.Input ended in mid-comment@> return(comment_continues=0); } c=*(loc++); @@; if (c==at_sign) { if (ccode[*loc]==new_module) { err_print("! Section name ended in mid-comment"); loc--; @.Section name ended in mid-comment@> return(comment_continues=0); } else loc++; } } } } @* Inputting the next token. @d constant = @'3 @= name_pointer cur_module; /* name of module just scanned */ @ @= #include "ctype.h" /* definition of |isalpha|, |isdigit| and so on */ @ As one might expect, |get_next| consists mostly of a big switch that branches to the various special cases that can arise. @u eight_bits get_next() /* produces the next input token */ { eight_bits c; /* the current character */ while (1) { if (loc>limit) { if (get_line()==0) return(new_module); else if (print_where) { print_where=0; @; } else return (@`\n'); } c=*loc; if (comment_continues) { skip_comment(); /* scan to end of comment or newline */ if (comment_continues || comments_end_with_newline) return(@`\n'); else continue; } @@; loc++; if (isdigit(c) || c=='\\' || c=='.') @@;/*spider*/ else if (isalpha(c) || c=='_' || c=='$') @@;/*spider*/ else if (c=='\'' || c=='\"') @@;/*spider*/ else if (c==at_sign) @@; else if (c==' ' || c==tab_mark) { continue; /* ignore spaces and tabs */ } mistake: @@; return(c); } } @ @= {/*spider*/ id_first=--loc; while (isalpha(*++loc) || isdigit(*loc) || *loc=='_'); if (*loc=='$') while (isdigit(*++loc)||*loc=='$'); /* make room for \$\$ and \$nnn suffixes */ id_loc=loc; return(identifier); } @ @= {/*spider*/ id_first=loc-1; if (*id_first=='.' && !isdigit(*loc)) goto mistake; /* not a constant */ if (*id_first=='\\') while (isdigit(*loc)) loc++; /* octal constant */ else { if (*id_first=='0') { if (*loc=='x' || *loc=='X') { /* hex constant */ loc++; while (isxdigit(*loc)) loc++; goto found; } } while (isdigit(*loc)) loc++; if (*loc=='.') { loc++; while (isdigit(*loc)) loc++; } if (*loc=='e' || *loc=='E') { /* float constant */ if (*++loc=='+' || *loc=='-') loc++; while (isdigit(*loc)) loc++; } } found: id_loc=loc; return(constant); } @ \cee\ strings and character constants, delimited by double and single quotes, respectively, can contain newlines or instances of their own delimiters if they are protected by a backslash. We follow this convention, but do not allow the string to be longer than |longest_name|. @= {/*spider*/ ASCII delim = c; /* what started the string */ @# /* if it's not a single-character literal, it's a tick mark or an |at_sign| */ if (delim=='\'' && (loc+1>=limit || (*loc != '\\' && *loc!=at_sign && loc[1]!='\'') || (*loc=='\\' && (loc+2>=limit||loc[2]!='\'')) || (*loc==at_sign && (loc+2>=limit||loc[1]!=at_sign||loc[2]!='\'')) )) goto mistake; id_first = mod_text+1; id_loc = mod_text; *++id_loc=delim; while (1) { if (loc>=limit) { if(*(limit-1)!='\\') { err_print("! String didn't end"); loc=limit; break; @.String didn't end@> } if(get_line()==0) { err_print("! Input ended in middle of string"); loc=buffer; break; @.Input ended in middle of string@> } else if (++id_loc<=mod_text_end) *id_loc=@`\n'; /* will print as \.{"\\\\\\n"} */ } if ((c=*loc++)==delim) { if (++id_loc<=mod_text_end) *id_loc=c; break; } if (c=='\\') { if (loc>=limit) continue; if (++id_loc<=mod_text_end) *id_loc = '\\'; c=*loc++; } if (++id_loc<=mod_text_end) *id_loc=c; } if (id_loc>=mod_text_end) { printf("\n! String too long: "); @.String too long@> ASCII_write(mod_text+1,25); printf("..."); mark_error; } id_loc++; return(string); } @ After an \.{@@} sign has been scanned, the next character tells us whether there is more work to do. @= { c=ccode[*loc++]; switch(c) { case ignore: continue; case control_text: while ((c=skip_ahead())==at_sign); /* only \.{@@@@} and \.{@@>} are expected */ if (*(loc-1)!='>') err_print("! Improper @@ within control text"); @.Improper {\AT!} within control text@> continue; case module_name: cur_module_char=*(loc-1); @; case string: @; #ifdef DEBUG case trace: tracing=*(loc-1)-'0'; continue; #endif DEBUG case ascii_constant: @; case octal: @; case hex: @; default: return(c); } } @ @=/*spider*/ id_first=loc; if (*loc=='\\') loc++; while (*loc!='\'') { loc++; if (loc>limit) { err_print("! String didn't end"); loc=limit-1; break; } } loc++; return(ascii_constant); @ @= { id_first=loc; while ('0'<=*loc && *loc<'8') loc++; id_loc=loc; return(octal); } @ @= { id_first=loc; while (isxdigit(*loc)) loc++; id_loc=loc; return(hex); } @ @= { ASCII *k; /* pointer into |mod_text| */ @; if (k-mod_text>3 && strncmp(k-2,"...",3)==0) cur_module=prefix_lookup(mod_text+1,k-3); else cur_module=mod_lookup(mod_text+1,k); if (cur_module_char=='(') { @@; } return(module_name); } @ Module names are placed into the |mod_text| array with consecutive spaces, tabs, and carriage-returns replaced by single spaces. There will be no spaces at the beginning or the end. (We set |mod_text[0]=' '| to facilitate this, since the |mod_lookup| routine uses |mod_text[1]| as the first character of the name.) @=mod_text[0]=' '; @ @= k=mod_text; while (1) { if (loc>limit && get_line()==0) { err_print("! Input ended in section name"); @.Input ended in section name@> loc=buffer+1; break; } c=*loc; @; loc++; if (k=mod_text_end) { printf("\n! Section name too long: "); @.Section name too long@> ASCII_write(mod_text+1,25); printf("..."); mark_harmless; } if (*k==' ' && k>mod_text) k--; @ @= if (c==at_sign) { c=*(loc+1); if (c=='>') { loc+=2; break; } if (ccode[c]==new_module) { err_print("! Section name didn't end"); break; @.Section name didn't end@> } *(++k)=at_sign; loc++; /* now |c==*loc| again */ } @ At the present point in the program we have |*(loc-1)=string|; we set |id_first| to the beginning of the string itself, and |id_loc| to its ending-plus-one location in the buffer. We also set |loc| to the position just after the ending delimiter. @= { id_first=loc++; *(limit+1)=at_sign; *(limit+2)='>'; while (*loc!=at_sign || *(loc+1)!='>') loc++; if (loc>=limit) err_print("! Verbatim string didn't end"); @.Verbatim string didn't end@> id_loc=loc; loc+=2; return(string); } @* Scanning a macro definition. The rules for generating the replacement texts corresponding to macros and \cee\ texts of a module are almost identical; the only differences are that \yskip \item{a)}Module names are not allowed in macros; in fact, the appearance of a module name terminates such macros and denotes the name of the current module. \item{b)}The symbols \.{@@d} and \.{@@f} and \.{@@u} are not allowed after module names, while they terminate macro definitions. \yskip Therefore there is a single procedure |scan_repl| whose parameter |t| specifies either |macro| or |module_name|. After |scan_repl| has acted, |cur_text| will point to the replacement text just generated, and |next_control| will contain the control code that terminated the activity. @d app_repl(c) = {if (tok_ptr==tok_mem_end) overflow("token"); *tok_ptr++=c;} @= text_pointer cur_text; /* replacement text formed by |scan_repl| */ eight_bits next_control; @ @u scan_repl(t) /* creates a replacement text */ eight_bits t; { sixteen_bits a; /* the current token */ int set_print_where; if (t==module_name) {@;} /* avoid inserting line number in macro replacement texts */ /* |print_where| is both tested and set in |get_next| */ while (1) { if (t==macro) { print_where = 0; } a=get_next(); if (t==macro) { set_print_where = print_where; } switch (a) { @@; default: app_repl(a); /* store |a| in |tok_mem| */ } } done: next_control=(eight_bits) a; if (text_ptr>text_info_end) overflow("text"); if (t==macro) { @; } cur_text=text_ptr; (++text_ptr)->tok_start=tok_ptr; print_where = set_print_where; } @ We don't ever want a macro replacement text to end with newline, but for readability of the {\tt WEB} source we usually want the last token in a macro definition to be a newline token. We can't just look for |@`\n'| at the end of the token list, because that might be the second half of a two-byte token, in which case it certainly {\em wouldn't} be a newline! So we look for a two-byte token (|*tok_ptr>=@'200|); as soon as we find one we've eliminated all trailing newlines. As long as we keep finding one-byte tokens, we drop trailing newlines as they come along. @= tok_ptr -= 2; while (*tok_ptr<@'200 && *(tok_ptr+1)==@`\n') tok_ptr--; tok_ptr += 2; @ We use macros with zero or more parameters, and we give the parameters names. In order to scan a macro definition, we need to be able to substitute special markers for the parameter names. We {\em don't} put the parameter names in the hash table, because they're strictly temporary. Instead we keep them in temporary storage: We allow macros to have up to 32 parameters using 256 text chars. @d max_param_name_texts = 256 @d max_param_names = 32 @= ASCII param_name_texts[max_param_name_texts]; ASCII *param_name_texts_end = param_name_texts+max_param_name_texts; ASCII * param_names[max_param_names]; /* pointers into |param_name_texts| */ short next_param_name; /* first free spot in |param_names| */ ASCII * next_param_name_text; /* first free spot in |param_name_texts| */ @ @= next_param_name=0; next_param_name_text=param_name_texts; param_names[next_param_name]=next_param_name_text; @ @=@; @ @= @; while (id_first= if (next_param_name==max_param_names) overflow ("parameter names"); if (id_loc - id_first > param_name_texts_end - next_param_name_text) overflow ("parameter name texts"); @ The function |parameter_number(first,loc)| returns |0| if the identifier is not a parameter, and the number of the parameter if it is a parameter. This is not the parameter number we'll store, because for storage we want the {\em last} parameter to be {\tt \#1}, the penultimate to be {\tt \#2}, and so on. This means we have to know the number of parameters only when constructing the replacement text, not when scanning the replacement text. @u int parameter_number(first, loc) ASCII *first, *loc; { ASCII *f, *p; int n; for (n=0;n= @@; @; @; if (next_control!= @`=') { err_print("! You must put an = sign before the macro replacement text"); @; } @; app_repl(next_param_name); /* store number of parameters in |tok_mem| */ scan_repl(macro); p->equiv=(ASCII *)cur_text; @; @; @ @= #ifdef TRACE_MACROS if (tracing>1) { printf("\nScanning definition of macro "); print_id(p); } #endif TRACE_MACROS @ @= #ifdef TRACE_MACROS if (tracing>2) { printf("\nMacro "); print_id(p); printf("'s replacement text is in text_info[%d]", cur_text-text_info); } #endif TRACE_MACROS @ @= @@; if (next_control==@`(') { do { @; @@; } while (next_control==@`,'); if (next_control != @`)') { err_print("! Macro parameter list must end with )"); @; } next_control=get_next(); /* first token following parameter list */ } @ @= if (next_control!=identifier) { err_print("! Macro name must be an identifier"); @.Macro name must be an identifier@> @; } else { p = id_lookup(id_first,id_loc,macro); if (p->ilk!=macro) { #ifdef WARN_USE_BEFORE_DEF printf("\n! Warning: macro name "); print_id(p); printf(" was used before it was defined"); mark_harmless; #endif WARN_USE_BEFORE_DEF p->ilk=macro; } else if (p+1!=name_ptr) { err_print ("! Macro name is multiply defined: "); } } @ @= @; if (next_control!=identifier) { err_print("! Macro parameter name not an identifier"); @.Macro parameter name...@> @; } else { if (parameter_number(id_first,id_loc)!=0) { err_print("! Duplicate parameters in macro definition"); @.Duplicate parameters...@> @; } else { @; } } @ @= while ((next_control=get_next())==@`\n'); @ We modify this from the old tangle: @= case identifier: { short n; if ((n=parameter_number(id_first,id_loc))!=0) { #ifdef TRACE_MACROS if(tracing>1) { printf("\nIdentified "); ASCII_write(id_first,id_loc-id_first); printf(" as parameter number %d (%d from back)",n,next_param_name-n+1); } #endif TRACE_MACROS app_repl(param); app_repl(next_param_name-n+1); /* reverses numbering */ } else { /* not a parameter */ a=id_lookup(id_first,id_loc,normal)-name_dir; app_repl((a / @'400)+@'200); app_repl(a % @'400); } } break; case module_name: if (t!=module_name) goto done; else { @; a=cur_module-name_dir; app_repl((a / @'400)+@'250); app_repl(a % @'400); @; break; } case constant: case string: @; case ascii_constant: @; case octal: @; break; case hex: @; break; case @`\n': #ifdef NEWLINES_IN_MACROS app_repl(a); #else if (t==macro) continue; else app_repl(a); #endif NEWLINES_IN_MACROS break; case definition: case format: case begin_unnamed: if (t!=module_name) goto done; else { err_print("! @@d, @@f and @@u are ignored in C text"); continue; @.{\AT!}d, {\AT!}f and {\AT!}u are ignored in C text@> } case new_module: goto done; @ Here is the code for the line number: first a |sixteen_bits| equal to |@'150000|; then, if we're dealing with the change file, the line number plus |@'100000|; or, if we're dealing with the web file, the line number; or, if we're dealing with an include file, the number 0, then the line number, followed by the number of characters in the file name and the file name. @= store_two_bytes(@'150000); if (changing) id_first=change_file_name; else id_first=cur_file_name; id_loc=id_first+strlen(id_first); if (changing) store_two_bytes((sixteen_bits)change_line); else store_two_bytes((sixteen_bits)cur_line); {int a=id_lookup(id_first,id_loc,normal)-name_dir; app_repl((a / @'400)+@'200); app_repl(a % @'400);} @ @= { ASCII *try_loc=loc; while (*try_loc==' ' && try_loc } @ @= app_repl(a); /* |string| or |constant| */ while (id_first < id_loc) { /* simplify \.{@@@@} pairs */ if (*id_first==at_sign) id_first++; app_repl(*id_first++); } app_repl(a); break; @ @= { int c; if (*id_first==at_sign) { c=xchr[*id_first++]; if (*id_first!=at_sign) err_print("! Double @@ within string"); } else if (*id_first=='\\') { id_first++; switch (*id_first) { case 't':c=@`\t';break; case 'n':c=@`\n';break; case 'b':c=@`\b';break; case '0':c=@`\0';break; case '\\':c=@`\\';break; default: err_print("! Unrecognized escape sequence"); } } else c=xchr[*id_first]; app_repl(constant); /* we don't want octal; we want decimal */ /* we know |c<=255| */ app_decimal((long)c); app_repl(constant); } break; @ Paranoia to work on any 32 bit integer machine... @= { long sum=0; while (id_first @"04000000) err_print("! Octal constant exceeds @@\"04000000"); } app_repl(constant); app_decimal(sum); app_repl(constant); } @ @= { long sum=0; while (id_first @"04000000) err_print("! Hex constant exceeds @@\"04000000"); } app_repl(constant); app_decimal(sum); app_repl(constant); } @ This function prints out a decimal constant using |app_repl|. @u app_decimal(c) long c; /* on entry require |c>=0| */ {long power; if (c==0) {app_repl('0'); return;} if (c<0) /* should never happen */ {app_repl('-'); c = - c;} for (power=1; c>=power; power *=10); /* now |power/10<=c=1; power /=10) { app_repl('0'+c/power); /* leading digit $>0$ */ c%=power; /* invariant: original c = this c + printed string*power */ } } @* Scanning a module. The |scan_module| procedure starts when `\.{@@\ }' or `\.{@@*}' has been sensed in the input, and it proceeds until the end of that module. It uses |module_count| to keep track of the current module number; with luck, \.{WEAVE} and \.{TANGLE} will both assign the same numbers to modules. @= extern sixteen_bits module_count; /* the current module number */ @ The top level of |scan_module| is trivial. @u scan_module() { name_pointer p; /* module name for the current module */ text_pointer q; /* text for the current module */ sixteen_bits a; /* token for left-hand side of definition */ module_count++; if (*(loc-1)=='*') /* starred module */ printf("*%d",module_count); fflush(stdout); @; @; } @ We define two kinds of ilks for identifiers: |normal| for ordinary identifiers, and |macro| for macros. @d normal = 0 @d macro = 1 @d simple = 2 @= next_control=0; while (1) { done_scanning: while (next_control<=format) if ((next_control=skip_ahead())==module_name) { /* scan the module name too */ loc-=2; next_control=get_next(); } if (next_control!=definition) break; @; cur_text->text_link=0; /* |text_link=0| characterizes a macro */ } @ We initialize the parameter name area at the beginning, and we re-initialize any time we have to punt a macro definition. This makes sure we have an empty parameter name area when scanning the replacement text for a module. @= @; p->ilk=normal; /* turn off macro replacement and hope for the best */ goto done_scanning; @ @= switch (next_control) { case begin_unnamed: p=name_dir; break; case module_name: p=cur_module; @; break; default: return; } @; scan_repl(module_name); /* now |cur_text| points to the replacement text */ @; @ @= while ((next_control=get_next())=='+'); /* allow optional `\.{+=}" */ if (next_control!='=') { err_print("! C text flushed, = sign is missing"); @.C text flushed...@> while ((next_control=skip_ahead()) != new_module); return; } @ @= store_two_bytes((sixteen_bits)(@'150000+module_count)); /* |@'150000==@'320*@'400| */ @ @= if (p==name_dir||p==0) { /* unnamed module, or bad module name */ (last_unnamed)->text_link=cur_text-text_info; last_unnamed=cur_text; } else if (p->equiv==(ASCII *)text_info) p->equiv=(ASCII *)cur_text; /* first module of this name */ else { q=(text_pointer)p->equiv; while (q->text_linktext_link+text_info; /* find end of list */ q->text_link=cur_text-text_info; } cur_text->text_link=module_flag; /* mark this replacement text as a nonmacro */ @ @u phase_one() { phase=1; module_count=0; reset_input(); while ((next_control=skip_ahead())!=new_module); while (!input_has_ended) scan_module(); check_complete(); phase=2; } @ @u print_stats() { printf("\nMemory usage statistics:\n"); printf("%d names (out of %d)\n",name_ptr-name_dir,max_names); printf("%d replacement texts (out of %d)\n",text_ptr-text_info,max_texts); printf("%d bytes (out of %d)\n",byte_ptr-byte_mem,max_bytes); printf("%d tokens (out of %d)\n",tok_ptr-tok_mem,max_toks); } @* Index. Here is a cross-reference table for the \.{TANGLE} processor. All modules in which an identifier is used are listed with that identifier, except that reserved words are indexed only when they appear in format definitions, and the appearances of identifiers in module names are not indexed. Underlined entries correspond to where the identifier was declared. Error messages and a few other things like ``ASCII code'' are indexed here too.