
pseudo 1.2.3

1 straight- \\+
2 forward \\-
3 pseudocode \\

Copyright © Magnus Lie Hetland 2019–2023

The pseudo package permits writing pseudocode without much fuss and with quite a
bit of configurability. Its main environment combines aspects of enumeration, tabbing
and tabular for nonintrusive line numbering, indentation and highlighting, and there
is functionality for typesetting common syntactic elements such as keywords, identifiers
and comments.

https://ctan.org/pkg/pseudo

The pseudo Package

Magnus Lie Hetland

March 21, 2023

Contents

1 Introduction 5

2 Pseudocode 9

3 Boxes and floats 21

4 Reference 29
4.1 Line structure . 29
4.2 Command and key reference . 30

5 But how do I . . . 59
5.1 . . . prevent paragraph indentation after pseudo? 59
5.2 . . . get log-like functions? . 60
5.3 . . . unbold punctuation? . 60
5.4 . . . use tabularx? . 61
5.5 . . . get tab stops? . 62
5.6 . . . use horizontal lines? . 64
5.7 . . . handle object attributes? . 65
5.8 . . . indicate blocks with braces or the like? 66
5.9 . . . use pseudo with older TEX distributions? 67
5.10 . . . use a header with no arguments? 68
5.11 . . . place algorithm boxes side by side? 69
5.12 . . . have steps span multiple lines? 70
5.13 . . . get the old spacing? . 71
5.14 . . . configure my tcolorboxes? 72

6 Implementation 75
6.1 Variable declarations . 76
6.2 Utilities . 77
6.3 Styles . 81
6.4 Notation . 84
6.5 Options . 85
6.6 The row separator . 94
6.7 Various user commands . 96
6.8 The pseudo environment . 97
6.9 Boxes and floats . 100
6.10 Deprecations and warnings . 104
6.11 Compatibility . 105

3

https://ctan.org/pkg/pseudo

4

Chapter 1

Introduction

The pseudo package lets you typeset pseudocode in a straightforward and not
all too opinionated manner. You don’t need to use separate commands for
different constructs; the indentation level is controlled in a manner similar to in
a tabbing environment:

1 while a ̸= b
2 if a > b
3 a = a − b
4 else b = b − a
5 return a

\begin{pseudo}
while $a \neq b$ \\+

if $a > b$ \\+
$a = a - b$ \\-

else $b = b - a$ \\-
return a

\end{pseudo}

If you prefer having end at the end of blocks, or you’d rather wrap them in
C-style braces, you just put those in. Fonts, numbering, indentation levels, etc.,
may be configured. You import pseudo with:

\usepackage[⟨options⟩]{pseudo}

The only option usable here at the moment is kw (used in the example above),
as the \usepackage command is a bit too eager in expanding its arguments, but
there are several options that may be provided to the \pseudoset command, to
configure things (see Sect. 4.2). For a more complete example, see Algorithm 1.1.

Microtutorial: How to produce Algorithm 1.1
The pseudocode in Algorithm 1.1 is typeset in the same way as on on this page.
The line numbers are styled using the label key, the vertical lines are produced
by the indent-mark option, and the comments are just a separate column of

5

https://ctan.org/pkg/pseudo
https://ctan.org/pkg/pseudo

6 Introduction

Algorithm 1.1 Euclid’s algorithm, Euclid(a, b)

Input: Two positive integers, a and b.
Output: The greatest common divisor of a and b.

1 while a ̸= b If equal, both are gcd
2 if a > b Reduce max with multiple of min
3 a = a − b a is largest
4 else b = b − a b is largest
5 return a Both are gcd, so return one

The running time is quadratic in the number of bits in the input.

a tabularx, which is used instead of the built-in tabular, as explained in
Sect. 5.4.∗ To get the surrounding ruled box, a tcolorbox is used, with the
style pseudo/ruled. This has been set up with a predefined box environment,
algorithm, which is defined in Chapter 3 (on page 23). The \pr command and
its relatives (as well as most other functionality) are discussed in Chapter 2, with
individual definitions given in Chapter 4.† The input and output descriptions
are aligned using \tab from the tabto package (cf. Sect. 5.5).

% In document preamble:
% \usepackage{tabto}
% \TabPositions{1.5cm} % Adjust as needed!

\begin{algorithm}{Euclid’s algorithm, \pr{Euclid}(a, b)}{euclid}

\textbf{Input:} \tab Two positive integers, a and b.

\textbf{Output:} \tab The greatest common divisor of a and b.

\begin{pseudo}[label=\small\arabic*, indent-mark, fullwidth]
while $a \neq b$ & If equal, both are gcd \\+

if $a > b$ & Reduce max with multiple of min \\+
$a = a - b$ & a is largest \\-

else $b = b - a$ & b is largest \\-
return a & Both are gcd, so return one

\end{pseudo}

The running time is quadratic in the number of bits in the input.

\end{algorithm}

∗ That is, the fullwidth style that is defined on page 61 is used in this example.
† The actual implementations, with explanations, are found in Chapter 6.

https://ctan.org/pkg/tcolorbox
https://ctan.org/pkg/tabto

7

With a different font, “Output:” may take up more space, and \tabto
might just introduce a line break. If so, simply increase the argument to
\TabPositions. To produce an indent right after a line break (\\)—e.g.,
if you want multiline input/output—use \null\tab.

Alternatives
There are many ways of typesetting code and pseudocode in LATEX, so if you’re
unhappy with pseudo, you have several alternatives to choose from. I wrote
pseudo based on my needs and preferences, but yours may differ, of course. For
example, I’ve built on tabular layouts to get (i) automatic width calculations;
(ii) line/row highlighting; and (iii) easy embedding in tikz nodes and the like.
I have also set things up inspired by existing mechanisms for numbering and
indenting lines, and treat the pseudocode as a form of text, rather than as a
form of markup in itself. The latter point means that I don’t have separate
commands for conditionals, loops, etc.

The basic style of pseudocode is inspired by the standard reference Introduc-
tion to Algorithms by Cormen et al. [1] (i.e., similar to that of newalg, clrscode
and clrscode3e). Rather than locking down all aspects of pseudocode appear-
ance, however, I’ve tried to make pseudo highly configurable, but if it’s not
flexible enough, or just not to your liking, you might want to have a look at the
following packages:

alg, algobox, algorithm2e, algorithmicx, algorithms, algpseudocodex,
algxpar, clrscode, clrscode3e, clrscode4e, latex-pseudocode, newalg,
program, pseudocode

There are also code-typesetting packages like listings and minted, of course.

Using older TEX distributions
The imlementation of pseudo uses some functionality that isn’t available in older
TEX distributions, in particular, older versions of xparse and expl3. Some care
has been taken to make the code backward compatible to the point where it
works on TEX Live 2020, which is what is used (at the time of writing) on
arXiv. If you run into issues somewhere else (e.g., when submitting to some
publisher with a custom setup), feel free to file an issue, or even provide a pull
request with a fix. One thing to look out for is that older versions of xparse
parse arguments differently, so things like \\[hl] would work, but separating
the arguments with spaces, as in \\ [hl] will not work, though this works with
more recent versions (as seen from some of my examples, later).

For more advice on working around an older distribution, see Sect. 5.9.

https://ctan.org/pkg/pseudo
https://ctan.org/pkg/pseudo
https://ctan.org/pkg/pgf
https://ctan.org/pkg/newalg
https://ctan.org/tex-archive/macros/latex/contrib/clrscode
https://ctan.org/pkg/clrscode3e
https://ctan.org/pkg/pseudo
https://ctan.org/tex-archive/macros/latex/contrib/alg
https://ctan.org/pkg/algobox
https://ctan.org/pkg/algorithm2e
https://ctan.org/pkg/algorithmicx
https://ctan.org/pkg/algorithms
https://ctan.org/pkg/algpseudocodex
https://ctan.org/pkg/algxpar
https://ctan.org/tex-archive/macros/latex/contrib/clrscode
https://ctan.org/pkg/clrscode3e
https://www.cs.dartmouth.edu/~thc/
https://github.com/esneider/latex-pseudocode
https://ctan.org/pkg/newalg
https://ctan.org/tex-archive/macros/latex/contrib/program
https://ctan.org/tex-archive/macros/latex/contrib/pseudocode
https://ctan.org/tex-archive/macros/latex/contrib/listings
https://ctan.org/pkg/minted
https://ctan.org/pkg/pseudo
https://ctan.org/pkg/xparse
https://ctan.org/pkg/expl3
https://arxiv.org
https://github.com/mlhetland/pseudo.sty/issues
https://github.com/mlhetland/pseudo.sty/pulls
https://github.com/mlhetland/pseudo.sty/pulls
https://ctan.org/pkg/xparse

8 Introduction

Chapter 2

Pseudocode

The main component of the pseudo package is the pseudo environment, which
is, in a sense, a hybrid of enumerate, tabular and tabbing, in that it pro-
vides numbered lines, each placed in a tabular row (for ease of highlighting and
automatic column width calculation), with functionality for increasing and de-
creasing indentation similar to the tabbing commands \+ and \- (in pseudo,
combined with the row separator \\). Here, once again, is Euclid’s algorithm
for finding the gcd of a and b:
1 repeat the following while a ̸= b
2 if a > b, let a = a − b
3 otherwise, let b = b − a

\begin{pseudo}
repeat the following while $a\neq b$ \\+

if $a > b$, let $a = a - b$ \\
otherwise, let $b = b - a$

\end{pseudo}

There are also some styling commands for special elements of the pseudocode:
while, false, rank, “Hello!”, Euclid(a, b), length(A), (Important!)

\kw{while}, % or \pseudokw -- keywords
\cn{false}, % or \pseudocn -- constants
\id{rank}, % or \pseudoid -- identifiers
\st{Hello!}, % or \pseudost -- strings
\pr{Euclid}(a, b), % or \pseudopr -- procedures
\fn{length}(A), % or \pseudofn -- functions
\ct{Important!} % or \pseudoct -- comments

The longer names (\pseudokw, \pseudocn, etc.) are always available; the more
convenient short forms (\kw, \cn, etc.) are prone to name collisions, and are
only defined if the names are not already in use when pseudo is imported.

Spacing is handled similarly to in LATEX lists, with \topsep and \parskip
added before and after, as well as \partopsep whenever the environment starts

9

https://ctan.org/pkg/pseudo
https://ctan.org/pkg/pseudo
https://ctan.org/pkg/pseudo

10 Pseudocode

a new paragraph. The left margin (how much the pseudocode is indented wrt.
the surrounding text) is set by the left-margin key (initially 0pt).

If pseudo occurs in a box such as fbox, or a tikz node, this spacing is
dropped. See also the compact key for overriding this behavior.

The indent-length option, which determines the length of each indentation
step, is initially set via the secondary indent-text key, so that the any code
after \kw{else} aligns with the indented text (a stylistic choice from clrscode3e):

1 if x < y
2 x = x + 1
3 else x = x − 1

\begin{pseudo}
\kw{if} $x < y$ \\+

$x = x + 1$ \\-
\kw{else} $x = x - 1$
\end{pseudo}

The indentation may also be configured with indent-mark, which inserts a mark
at every indenation step:

1 while x ≤ n
2 x = x + 1
3 if f(x) < y
4 x = x + 1
5 print x
6 return x

\begin{pseudo}[indent-mark]
while $x\leq n$ \\+

$x = x + 1$ \\
if $f(x) < y$ \\+

$x = x + 1$ \\-
print x \\-

return x
\end{pseudo}

The default is a vertical line, but anything else may be supplied as an argument.
To avoid adding to the indentation, you can wrap this argument in \rlap.∗ The
color may be modified using indent-mark-color:

∗ If your mark is very tall, and you don’t wish it to increase the line height, you could also
wrap it in \smash.

https://ctan.org/pkg/pgf
https://ctan.org/pkg/clrscode3e

11

1 while x ≤ n
2 ▷ x = x + 1
3 ▷ if f(x) < y
4 ▷ ▷ x = x + 1
5 ▷ print x
6 return x

\begin{pseudo}[
indent-mark=\rlap{\triangleright}, indent-mark-color=teal]
while $x\leq n$ \\+

$x = x + 1$ \\
if $f(x) < y$ \\+

$x = x + 1$ \\-
print x \\-

return x
\end{pseudo}

The default indent mark scales with the line height, which can be adjusted with
line-height and extra-space, to avoid gaps in the vertical lines, and its width
has no impact on the indentation. The width of the (default) mark can be set
with indent-mark-width:∗

1 the

2 lines

3 are

4 scaled

\begin{pseudo}[
indent-mark, indent-mark-width=3pt, line-height=1.5]
the \\+

lines \\+[3ex]
are \\-

scaled
\end{pseudo}

Note here how some extra space is specified using the optional argument 3ex
with \\. This is equivalent to explicitly setting the key extra-space (i.e., in
this case, \\+[extra-space=2ex]).

If you want, you can certainly create shortcuts, e.g., with simple macro def-
initions like \def\While{\kw{while}}, or with declaration commands such as
\DeclarePseudoKeyword or \DeclarePseudoConstant. Procedures and func-
tions capture parenthesized arguments and set them in math mode; this car-
ries over in shortcuts, so if you define \Euclid to mean \pr{Euclid}, then
\Euclid(a, b) yields Euclid(a, b).†

∗ You can also shift the default mark inward by setting indent-mark-shift.
† Note that \Euclid (a, b), with a space before the parenthetical, yields Euclid (a, b).

12 Pseudocode

These commands are not used in the internals of the package, so they may be
freely redefined for different styling, such as \let\id\textsf. They generally
do some extra work, though, such as wrapping the styled text in \textnormal to
avoid having the styles blend, adding quotes (\st) and handling parenthesized
arguments (\pr). To let you hook into their appearance without messing with
their definitions, each command has a corresponding font command (\kwfont,
\cnfont, \idfont, etc.), which you may redefine. These fonts may even be set
using correspondingly named options, either with \pseudoset or via optional
keyword arguments to the pseudo environment:∗

Euclid’s algorithm is initiated with the call Euclid(a, b).

\pseudoset{prfont=\textsf}
Euclid’s algorithm is initiated with the call \pr{Euclid}(a, b).

You can also configure the quotes and comment markers:

1 print ‘Hello, world! ’ //Greeting

\pseudoset{
st-left=‘, st-right=’, stfont=\textit,
ct-left=\texttt{/\!/}\,, ct-right=, ctfont=

}
\begin{pseudo}
\kw{print} \st{Hello, world!} \quad \ct{Greeting}
\end{pseudo}

Note that \stfont and friends may either be font-switching commands
like \itshape or formatting commands like \textit, though the latter are
generally preferable when available. They need not be restricted to actual
fonts, but may include color commands, for example.

You can also set the font for the entire code lines, using the font option.
The command you provide there should just switch the font (i.e., not take an
argument to typeset); initially, \kwfont is such a command:

1 while a ̸= b
2 if a > b
3 a = a − b
4 else b = b − a

∗ Because of LATEX expansion behavior, they can not be set globally when importing pseudo.

https://ctan.org/pkg/pseudo

13

\begin{pseudo}[font=\kwfont]
while $a \neq b$ \\+

if $a > b$ \\+
$a = a - b$ \\-

else $b = b - a$
\end{pseudo}

Though not the default, this is in fact an intended configuration, to reduce the
markup noise for pseudocode that consists primarily of keywords and mathemat-
ics. The setting font = \kwfont is also available by using the kw option (with no
arguments), e.g., by importing the package with \usepackage[kw]{pseudo}. If
you need to typeset normal text in your pseudocode after using font, you can
use \textnormal or \normalfont, for which pseudo defines aliases \tn and \nf:
1 for each node v ∈ V
2 do something
3 for each edge e ∈ E
4 do something else

\begin{pseudo}[kw]
for \tn{each node} $v\in V$ \\+

\tn{do something} \\-
for \nf each edge $e \in E$ \\+

\nf do something else
\end{pseudo}

The row separator may have multiple pluses or (more commonly) multiple mi-
nuses appended, indicating multiple increments or decrements to the indentation
level:
1 for k = 1 to n
2 for i = 1 to n
3 for j = 1 to n
4 tij = tij ∨ (tik ∧ tkj)
5 return t

\begin{pseudo}[kw]
for $k = 1$ to n \\+
for $i = 1$ to n \\+
for $j = 1$ to n \\+
$t_{ij} = t_{ij} \lor (t_{ik} \land t_{kj})$ \\---
return t
\end{pseudo}

The code is normally typeset in a two-column tabular (whose preamble, and
thus number of columns, is configurable via the option preamble), but the first
column is handled by an automatic prefix inserted before each line, containing

https://ctan.org/pkg/pseudo

14 Pseudocode

the numbering and column separator (&). You disable the prefix for the following
line by using *. If you add the & manually, you get an (appropriately indented)
unnumbered line:

1 this line has an automatic prefix
this line does not

2 but this one does

\begin{pseudo}
this line has an automatic prefix \\+*&
this line does not \\+
but this one does

\end{pseudo}

The *& combo can also be used for manual line breaking in multiline pseudo-
code steps:

1 Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy
eirmod tempor invidunt ut labore et dolore magna aliquyam erat.

2 At vero eos et accusam et justo duo dolores et ea rebum. Stet clita
kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor.

\begin{pseudo}[indent-mark]
Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam
nonumy *& eirmod tempor invidunt ut labore et dolore magna
aliquyam erat. \\+
At vero eos et accusam et justo duo dolores et ea rebum. Stet
clita *& kasd gubergren, no sea takimata sanctus est Lorem ipsum
dolor.
\end{pseudo}

Automatic line wrapping is a bit trickier. See Sect. 5.12 for a discussion.

This star also works after \begin{pseudo}. Note that in order to prevent
your code from ending up in the numbering column, you must insert a column
separator manually. A version of the \pr command, called \hd (or \pseudohd,
where \hd stands for header) instead wraps a procedure call in a multicolumn,
so it can be used, for example, as an unnumbered header line:∗

Euclid(a, b)
1 if b == 0
2 return a
3 else return Euclid(b, a mod b)

∗ See also hd-space, if you want some extra space after the header.

15

\begin{pseudo}[kw]*
\hd{Euclid}(a, b) \\
if $b \== 0$ \\+

return a \\-
else return \pr{Euclid}(b, a \bmod b)

\end{pseudo}

The \hd command is less capable than \pr and \fn in its argument pars-
ing: the parenthetical arguments are mandatory, and they are terminated
at the first closing parenthesis, regardless of nesting. If you want to in-
clude parentheses in the arguments, you need to wrap them in braces, e.g.,
\hd{Traverse}({G=(V, E), s}).

Another style is to include the header as a statement, just as any other,
perhaps with an introductory keyword. The following example, for example,
is based on one in the algxpar documentation (using pseudo* to suppress line
numbering, along with a couple of config keys):

function Max(a, b)
if a > b then

return a
else

return b
end if

end function

\begin{pseudo*}[font=\bf, indent-length=1.5em]
function \pr{Max}(a, b) \\+

if $a > b$ then \\+
return a \\-

else \\+
return b \\-

end if \\-
end function
\end{pseudo*}

As can be seen in the earlier Euclid example, \== (or \eqs) is a notational
convenience defined by pseudo, along with interval dots \.. (or \dts) and the
alternative range operator \rng:

Do you prefer A[1 . . n] or A[1 : n]?

Do you prefer $A[1 \.. n]$ or $A[1 \rng n]$?

https://ctan.org/pkg/algxpar
https://ctan.org/pkg/pseudo

16 Pseudocode

Shortcuts for \rng

The \.. command is actually implemented by hijacking the \. command,
and isn’t easily redefined directly. Instead, if you want 1\..n to produce
1 : n, you can redefine \dts, using \let\dts\rng.
Another option is to introduce some other shortcut, such as \:, for example:
A[1 : n]

\let\:\rng
$A[1\:n]$

Note that \: is an existing spacing command that produces a medium
space. If \: is redefined, this spacing command is still available as \>.
However, if you use packages that rely on \:, such a redefinition might
cause trouble. One solution is to keep the redefinition local, e.g., using
\pseudoset{init=\let\:\rng}.

Other special symbols may be found in other packages. For example, if you
want to use := for assignment, you can use \coloneqq from mathtools (perhaps
with \let\gets\coloneqq).∗

As can be seen, one use of * is to get an unnumbered line, but you could
also insert custom material in the first column. The lines are numbered by the
counter pseudoline, so you could, for example, do:

A Look!
B We’re using letters!

\begin{pseudo}*
\stepcounter{pseudoline}\Alph{pseudoline} & Look! *
\stepcounter{pseudoline}\Alph{pseudoline} & We’re using letters!
\end{pseudo}

This is a bit cumbersome, so there are some shortcuts. First of all, rather
than replacing the entire prefix, you can replace only a part of it, namely the
label, retaining counter increments and column separators. You can set this
key for each line individually with an optional argument to the row separator,
i.e., \\[label = ⟨commands⟩], or at some higher level. Within the pseudo
environment, there is also a counter named * that is simply a local clone of
pseudoline, letting you use starred versions of counter commands, similarly to
how label definitions work in enumitem:†

1: Look!
2: We’re using something custom!
∗ Tip: If you want to use a left-arrow for assignment, but think it’s a bit large in Computer

Modern or Latin Modern, you can use the old-arrows package, so x \gets y yields x y.
† Also like in enumitem, there’s a start key for setting the first line number.

https://ctan.org/pkg/mathtools
https://ctan.org/pkg/enumitem
https://ctan.org/tex-archive/fonts/old-arrows
https://ctan.org/pkg/enumitem

17

\pseudoset{label=\small\arabic*:}
\begin{pseudo}
Look! \\
We’re using something custom! \label{custom-line}
\end{pseudo}

Note that if you refer to the labeled line with \ref, you’ll just end up with 2,
which is probably what you’d want in this case. If you want a custom reference
format as well, you can set that with the ref key, in the same way as with
label. If you use the key without arguments, it’ll use the same format as the
one provided to label:
(i) Look!
(ii) We’re using Roman numerals!
(iii) And here’s a reference to line (ii).

\pseudoset{label=(\textit{\roman*}), label-align=l, ref}
\begin{pseudo}
Look! \\
We’re using Roman numerals! \label{roman-line} \\
And here’s a reference to line \ref{roman-line}.
\end{pseudo}

The label-align key sets the alignment of the label column, and can be l, r
or c (or really any other column type compatible with the array package; you
could use a p{...} column to get fixed width, for example).

Highlighting can also be done in a similar manner, by, e.g., inserting a
\rowcolor at the start of the first column. Rather than doing this manually,
you could use the bol key, which inserts a command at the beginning of the
line—or the hl key, which is equivalent to bol-prepend = \pseudohl:
I’m not highlighted
But I am!

\begin{pseudo*}
I’m not highlighted \\[hl]
But I am!
\end{pseudo*}

Initially, the \pseudohl command that is inserted is simply a \rowcolor that
uses hl-color, but you’re free to redefine this command to whatever you’d like.

In the previous example, there is no spacing to the sides of the table contents.
This is normally what you’d want, for example, to keep the pseudocode aligned
with the surrounding text. However, when using row highlighting (e.g., because
you are stepping through the code in some presentation), that alignment may
be less of an issue—and you’d rather widen the highlight a bit. The horizontal
padding on each side is controlled by the hpad key.

https://ctan.org/pkg/array

18 Pseudocode

If you use hl without hpad, you’ll get a warning. You can turn this warning
off using hl-warn or by setting hpad to 0pt.

You can either specify a length, or just turn on the default, by not supplying
an argument. There’s a similar option, hsep, which controls the separation
between the two columns.

1 let’s
2 use
3 some
4 padding!

\begin{pseudo}[hpad, hsep=1em, indent-length=1em]
let’s \\+

use \\-
some \\+ [hl]

padding!
\end{pseudo}

For ease of use with beamer, the various pseudo options support beamer overlay
specifications. For example, using hl<1> means that the hl specification would
only take effect on slide 1. If you use such an overlay specification on a key
when not using beamer, the key is simply ignored.

What is more, the row separator itself takes an overlay specification as a
shortcut for the one on hl, so \\<1,2-4> is equivalent to \\[hl<1,2-4>].

Actually, explicitly using hl<1,2-4> wouldn’t work! The problem is that
the key–value lists are split at commas before individual keys (including
overlay specifications) are parsed. And unlike values, using braces to “pro-
tect” the keys isn’t entirely straightforward. The solution is instead to use
the key multiple times, as in \\[hl<1>, hl<2-4>].

Just like with the optional arguments, space before the overlay specification
is ignored, so you’re free to put the specification in front of the line in question:

1 Go to line 3
2 Go to line 4
3 Go to line 2
4 Go to line 1

1 Go to line 3
2 Go to line 4
3 Go to line 2
4 Go to line 1

1 Go to line 3
2 Go to line 4
3 Go to line 2
4 Go to line 1

1 Go to line 3
2 Go to line 4
3 Go to line 2
4 Go to line 1

% In a beamer presentation
\begin{pseudo}

<1> Go to line 3 \\
<3> Go to line 4 \\
<2> Go to line 2 \\
<4> Go to line 1 \\

\end{pseudo}

https://ctan.org/pkg/beamer
https://ctan.org/pkg/pseudo
https://ctan.org/pkg/beamer

19

You might have expected these overlay specifications to indicate visibility, as
they do for the \item command in \enumerate, for example. However, in step-
wise animations, highlighting patterns (showing which line is currently executed,
for example) tend to be more complex than, say, a gradual uncovering—and
therefore in greater need of abbreviation.

To control visibility, you could, for example, add \pause at the end of each
line, before the row separator. You can also do this using the eol key, either
per line or at the top level, with eol = \pause. There is even the shortcut key
pause for this specific purpose (equivalent to eol-append = \pause):

1 Eeny
2 Meeny
3 Miny
4 Moe

1 Eeny
2 Meeny
3 Miny
4 Moe

1 Eeny
2 Meeny
3 Miny
4 Moe

1 Eeny
2 Meeny
3 Miny
4 Moe

% In a beamer presentation
\setbeamercovered{transparent}
\begin{pseudo}[pause]

Eeny \\
Meeny \\
Miny \\
Moe \\

\end{pseudo}

The eol value is only inserted wherever \\ starts a new line (i.e., not at the end
of the environment), so in this case only three \pause commands are inserted.

The last \\ looks for an immediately following \end{pseudo}, after skip-
ping any non-paragraph whitespace, so if you insert anything between the
the \\ and \end{pseudo}, even if it’s just an empty line (i.e., a \par),
you’ll end up with an extra (empty) line in the result. Note, however, that
the last \\ is entirely optional!

The previously discussed configuration keys are described in more detail in
Chapter 4. You can create your own presets or styles using \pseudodefinestyle.
This command takes two arguments; the first is the name of a key, and the sec-
ond is a key–value list, as you would have supplied it to \pseudoset. This
is exactly how the starred style is defined (see page 99), clearing the prefix
and reducing the preamble to a single column. This style is what’s used in the
starred, unnumbered version of the pseudo environment:

while a ̸= b
if a > b

a = a − b
else b = b − a

return a

20 Pseudocode

\begin{pseudo*}
while $a \neq b$ \\+

if $a > b$ \\+
$a = a - b$ \\-

else $b = b - a$ \\-
return a

\end{pseudo*}

Chapter 3

Boxes and floats

There are (at least) two different ways of viewing a block of pseudocode: as an
inline element, like equations, or as a float, like figures and tables. For example,
Cormen et al. [1] place their pseudocode inline, and refer to the algorithms by
name (e.g., “Dijkstra”), while Williamson and Shmoys [5] place them in floats,
and refer to them by number (e.g., “Algorithm 3.1”).∗

Just using the pseudo environment is sufficient for typesetting pseudocode
as part of the body text. If you wish to place your pseudocode in a float, you can
easily use a package such as float.† You could also use the float environments
supplied with packages such as algorithms, algorithmicx and algorithm2e.

The definition of \== doesn’t properly carry over into floats. It’s properly
redefined inside pseudo, so you probably won’t notice, but if you wish to
use the symbol outside the pseudo environment, but in a float (e.g., inside
\caption), you’ll need to either call \RestorePseudoEq to re-establish
pseudo’s redefinition of \= or simply use \eqs instead of \==.

The short story
First import tcolorbox, with libraries skins and theorems (see nearby side-
bar), and then put the following in your preamble:

\newtcbtheorem{algorithm}{Algorithm}{pseudo/ruled, float}{alg}

You now have an algorithm float with the pseudo/ruled style. The en-
vironment takes two arguments: the title and a label name, which can be
left empty.

∗ A third option that is sometimes used is to use a theorem-like environment for your algo-
rithms. There are many packages to help with this; just search ctan for “theorem”.

† Or you could do a quick ctan search for “float”, or a look at the recommendations related
to the float package, will give you many options, with varying functionality.

21

https://ctan.org/tex-archive/macros/latex/contrib/float
https://ctan.org/pkg/algorithms
https://ctan.org/pkg/algorithmicx
https://ctan.org/pkg/algorithm2e
https://ctan.org/pkg/pseudo
https://ctan.org/pkg/tcolorbox
https://ctan.org
https://ctan.org/search/?phrase=theorem
https://ctan.org
https://ctan.org/search/?phrase=float
https://ctan.org/recommendations/float
https://ctan.org/tex-archive/macros/latex/contrib/float

22 Boxes and floats

Importing tcolorbox
For performance reasons, pseudo does not automatically import tcolorbox;
if you want to use the box functionality, you will need to import it yourself:

\usepackage{pseudo}
% ...
\usepackage{tcolorbox} % possibly with options
\tcbuselibrary{skins,theorems} % remember these

It does not matter whether you import tcolorbox before or after pseudo, but
make sure you also import the two libraries skins and theorems, as in the
example above.

The pseudo package does provide some specialized setup, however, using tcolor-
box. This also lets you typeset non-float pseudocode with a colored background,
for example, like Cormen et al. do in the most recent version of their textbook [2].
The styles defined by pseudo are versions of the commonly used boxed and ruled
styles, as found in, e.g., float, as well as the boxruled and tworuled styles found
in algorithm2e. In addition, there’s a filled style, with a colored background. If
you wish to customize and extend the box style, pseudo/boxruled is probably
the best starting point, as the other styles disable the default frame drawing.

The ruled style is one of the more common ones in use in publications. This
is a style originally used for (non-floating) tables in Concrete Mathematics [3].
Rather than reproducing the look of those tables directly, pseudo aims to match
the style of booktabs, with spacing and line thicknesses taken from its con-
stants such as \aboverulesep, \heavyrulewidth, etc. (with defaults provided
if booktabs has not been imported).∗ The pseudo/booktabs style uses the same
pattern of thin and thick lines as booktabs tables, while pseudo/ruled uses a
thin line at the bottom, as in the Concrete Mathematics style.

The pseudo box styles can be used used directly to style tcolorbox environ-
ments, possiby with additional tcolorbox options for customization:

Bor̊uvka(V, E, w, T)
1 while E is not empty
2 for each u ∈ V
3 add light uv ∈ E to T
4 for each e ∈ T
5 contract e

∗ In booktabs, the contents between the top rules make up the header row, whereas in the
Concrete Mathematics style, it’s the caption.

https://ctan.org/pkg/tcolorbox
https://ctan.org/pkg/pseudo
https://ctan.org/pkg/tcolorbox
https://ctan.org/pkg/tcolorbox
https://ctan.org/pkg/pseudo
https://ctan.org/pkg/pseudo
https://ctan.org/pkg/tcolorbox
https://ctan.org/pkg/tcolorbox
https://ctan.org/pkg/pseudo
https://ctan.org/tex-archive/macros/latex/contrib/float
https://ctan.org/pkg/algorithm2e
https://ctan.org/pkg/pseudo
https://ctan.org/pkg/booktabs
https://ctan.org/pkg/booktabs
https://ctan.org/pkg/booktabs
https://ctan.org/pkg/pseudo
https://ctan.org/pkg/tcolorbox
https://ctan.org/pkg/booktabs

23

% In document preamble:
% \usepackage[cmyk]{xcolor}
% Partial clrscode4e.sty emulation:
\definecolor{lighttan}{cmyk}{0,0.05,0.17,0}
\pseudoset{label=\small\arabic*, hd-space}

\begin{tcolorbox}[pseudo/filled, colback=lighttan]
\begin{pseudo}*

\hd{Bor\r{u}vka}(V, E, w, T) \\
\kw{while} E is not empty \\+

\kw{for} each $u\in V$ \\+
add light $uv \in E$ to T \\-

\kw{for} each $e \in T$ \\+
contract e

\end{pseudo}
\end{tcolorbox}

Beyond the boxes themselves, you can customize the pseudocode inside them
(separately from pseudocode elsewhere) by defining the in-float style with
\pseudodefinestyle.

You can also create new environments with \newtcolorbox,∗ but the most
common use-case will probably be to define a (possibly floating) theorem-style
environment, using \newtcbtheorem (probably in the preamble):

\newtcbtheorem{algorithm}{Algorithm}{pseudo/ruled}{alg}

Here algorithm is the name we’ve chosen for our new environment, Algorithm
is the label to be used when numbering (i.e., “Algorithm 1,” etc.), pseudo/ruled
is the ruled box style, and alg is is a prefix that will be used in automatically
labeling our boxes.

If you want a floating box (like figures and tables, for example), simply add
the key float alongside the box style, such as:

\newtcbtheorem{algorithm}{Algorithm}{pseudo/ruled, float}{alg}

Other tcolorbox styling options may be inserted in the same place. One can
also supply some init options as a first argument, for configuring the automatic
numbering. For example, if we want our algorithms to be numbered within
sections, and we wish to provide cleveref with the appropriate names, we could
define the environment like this:†

∗ See the tcolorbox for details and alternatives.
† If you use the crefname option, you should make sure to place your \newtcbtheorem com-

mand in the preamble, and not in the document body, for the naming to take effect.

https://ctan.org/pkg/tcolorbox
https://ctan.org/pkg/cleveref
https://ctan.org/pkg/tcolorbox

24 Boxes and floats

\newtcbtheorem[
number within = chapter,
crefname = {Algorithm}{algorithms}

]%
{algorithm}{Algorithm}{pseudo/ruled, float}{alg}

Once our environment has been defined with \newtcbtheorem, it can be used
as follows (here with floating turned off locally):

Algorithm 3.1 Sort an array A of n elements.

1 i = 1
2 while i < n
3 if i == 1 or A[i − 1] ≤ A[i]
4 i = i + 1
5 else swap A[i − 1] and A[i]
6 i = i − 1

\begin{algorithm}{Sort an array A of n elements.}{gnome}
\begin{pseudo}

$i = 1$ \\
while $i < n$ \\+

if \nf $i\== 1$ or $A[i-1] \leq A[i]$ \\+
$i = i + 1$ \\-

else \nf swap $A[i-1]$ and $A[i]$ \\+
$i = i - 1$

\end{pseudo}
\end{algorithm}

The first argument is the title, or “caption,” and the second argument
(gnome) is the marker, which is combined with the prefix (in our case, alg)
to create the label, alg:gnome, which can be used with \ref or (using cleveref)
\cref, etc.:∗

Algorithm 3.1 is the well-known gnome sort, by Sarbazi-Azad and Grune.

\Cref{alg:gnome} is the well-known \emph{gnome sort}, by
Sarbazi-Azad and Grune.

Algorithms 3.2 to 3.6 are typeset with the remaining box styles.

∗ The separator (:) can be configured; see the tcolorbox docs.

https://ctan.org/pkg/cleveref
https://ctan.org/pkg/tcolorbox

25

Algorithm 3.2 pseudo/booktabs

1 i = 1
2 while i < n
3 if i == 1 or A[i − 1] ≤ A[i]
4 i = i + 1
5 else swap A[i − 1] and A[i]
6 i = i − 1

Algorithm 3.3 pseudo/boxed
1 i = 1
2 while i < n
3 if i == 1 or A[i − 1] ≤ A[i]
4 i = i + 1
5 else swap A[i − 1] and A[i]
6 i = i − 1

Algorithm 3.4 pseudo/boxruled

1 i = 1
2 while i < n
3 if i == 1 or A[i − 1] ≤ A[i]
4 i = i + 1
5 else swap A[i − 1] and A[i]
6 i = i − 1

Algorithm 3.5 pseudo/tworuled
1 i = 1
2 while i < n
3 if i == 1 or A[i − 1] ≤ A[i]
4 i = i + 1
5 else swap A[i − 1] and A[i]
6 i = i − 1

Algorithm 3.6 pseudo/filled

1 i = 1
2 while i < n
3 if i == 1 or A[i − 1] ≤ A[i]
4 i = i + 1
5 else swap A[i − 1] and A[i]
6 i = i − 1

Unnumbered boxes may be constructed with \newtcolorbox, using the same
styles. These boxes, by default, have no title part—only the main body, con-
taining the pseudocode itself:

26 Boxes and floats

Sum(a, b)
1 if b == 0
2 return a
3 return Sum(a, b − 1) + 1

\newtcolorbox{pseudobox}{pseudo/filled}

\begin{pseudobox}
\begin{pseudo}*

\hd{Sum}(a, b) \\
if $b \== 0$ \\+

return a \\-
return $\pr{Sum}(a, b - 1) + 1$

\end{pseudo}
\end{pseudobox}

It is possible to add titles using the title key, but then the definition must
be expanded slightly, to permit arguments, e.g.:

\newtcolorbox{pseudobox}[1][]{pseudo/filled, #1}

Here we’ve added a single argument ([1]), with an empty default ([]), and
this is spliced into the box options at the end. Now we may configure each box
individually, as we please:

Sum(a, b)

1 if b == 0
2 return a
3 return Sum(a, b − 1) + 1

\begin{pseudobox}[title={\pr{Sum}(a, b)}]
\begin{pseudo}

if $b \== 0$ \\+
return a \\-

return $\pr{Sum}(a, b - 1) + 1$
\end{pseudo}
\end{pseudobox}

Colors (e.g., colback, colbacktitle or colframe), fonts (e.g., fonttitle),
line thicknesses (boxrule or titlerule), puncutation (separator sign and
terminator sign) etc., may also be configured, either for all the boxes of this
type (directly in the call to \newtcolorbox) or for any individual box, as with
the title key in the previous example. The style that is closest to a plain,
default tcolorbox is pseudo/boxruled, which may be a good starting-point for
this kind of configuration. However, if you just wish to add some minor tweaks to
one of the existing pseudo styles (e.g., changing the colors of pseudo/filled),

27

starting with that style may be easier. (For some hints on configuring the boxes,
see Sect. 5.14.)

The contents of one of these boxes need not be restricted to pseudocode—
the spacing is set up to handle plain text as well. For example, you may want
to specify inputs and outputs.∗ (If you want to align such specification, as in
Algorithm 1.1 on page 6, you can use the tabto package; see Sect. 5.5.)

Algorithm 3.7 Gnome sort

Input: An array A of length n.
Output: A, sorted in nondescending order.

1 i = 1
2 while i < n
3 if i == 1 or A[i − 1] ≤ A[i]
4 i = i + 1
5 else swap A[i − 1] and A[i]
6 i = i − 1

The running time of the algorithm is quadratic.

\begin{algorithm}{Gnome sort}{} % environment defined earlier

\textbf{Input:} An array A of length n.

\textbf{Output:} A, sorted in nondescending order.

\begin{pseudo}
$i = 1$ \\
while $i < n$ \\+

if \nf $i \== 1$ or $A[i-1] \leq A[i]$ \\+
$i = i + 1$ \\-

else \nf swap $A[i-1]$ and $A[i]$ \\+
$i = i - 1$

\end{pseudo}

The running time of the algorithm is quadratic.

\end{algorithm}

∗ Common alternatives to “Input/Output” are “Require/Ensure” and “Data/Result.”

https://ctan.org/pkg/tabto

28 Boxes and floats

Why only styles?
Currently, pseudo defines only tcolorbox styles, and not any actual boxes
or theorem-style environments. While this may change in the future, it
has a couple of advantages. First, the style definitions aren’t dependent on
tcolorbox being imported, making it entirely optional. Second, when defin-
ing the box or theorem environment, you can easily configure the counter
style, counter level, etc., through the normal tcolorbox mechanisms. Similar
customization mechanisms would have to be defined, anyway, and there is
no real point in aliasing them, rather than simply using the originals.

https://ctan.org/pkg/pseudo
https://ctan.org/pkg/tcolorbox
https://ctan.org/pkg/tcolorbox
https://ctan.org/pkg/tcolorbox

Chapter 4

Reference

This section gives an overview of all the moving parts of the package. A default
value is one used implicitly if the key is specified with no explicit value given,
while an initial value is one provided to the key at the point where pseudo is
imported. Several commands (such as, e.g., \pseudoprefix) may be modified
using corresponding keys (e.g., prefix). When the behavior of such commands
is described, the description references their initial behavior.

4.1 Line structure
Each line of a pseudo environment is (initially) structured as follows:

bol step label & save ind. font body eol \\

prefix setup
Inserted by \\ (not *) Part of preamble Inserted by \\ (not last)

The components in the prefix are populated by the \\ command (or the be-
ginning of the environment), the ones in the setup by the preamble, and the
actual body is supplied by the user, inside the environment, terminated by the
row separator \\ (which then goes on to populate the next row, and so on).
The eol part is also inserted by \\, except if it’s used after the last line (where
it doesn’t really do anything).∗ The following describes the default behavior,
which can be modified substantially by setting the appropriate options (e.g.,
prefix and setup).

bol This field is inserted by \\ (and \begin{pseudo}) at the beginning of the
following line, using the \pseudobol command. Because it’s a the very
beginning of the tabular row, it may be used for things like \rowcolor
when highlighting lines (as with the hl key).

step This refers to a call to \stepcounter* (where * is an alias for pseudoline),
getting the counter ready for the label itself. Note that this does not use
\refstepcounter, so at this point the counter has not been saved yet
(and so you should not use \label to refer to it at this point).

∗ Thus, eol acts more as a line separator than a line terminator.

29

https://ctan.org/pkg/pseudo

30 Reference

label This is where the numbering label is inserted, using \pseudolabel; ini-
tially, this inserts \arabic*.

& At the end of the prefix is the column separator, closing the label column
and beginning the code line column.

save Now that we’re in the column where the user will normally insert text and
code, we save pseudoline so it may be used with \label and \ref, etc.
This is done using \pseudosavelabel, which first decrements the counter
(to undo the increment before the label) and then calls \refstepcounter.

ind. Inserts the appropriate amount of indentation (with an indent step length
set by indent-length or indent-text and the indentation level set by
+/- flags or indent-level), using \pseudoindent.

font Inserts the base font, using \pseudofont.

body This is where the manually written body of the code line appears.

eol Inserted by the terminating \\ (using \pseudoeol), unless we’re at the
end of the environment. Useful, e.g., for taking actions such as a beamer
\pause (cf., pause) between the lines.∗

\\ The row/line separator. Ends one line (inserting eol) and begins another
(inserting prefix). As in tabulars in general, this command is also per-
mitted after the final line of the environment, but there it does no real
work (i.e., it does not insert eol and does not start a new line).

4.2 Command and key reference
In addition to descriptions of the various commands and options/keys (in al-
phabetical order), you’ll find definitions of a couple of counters here (* and
pseudoline).

*
This counter is a duplicate of pseudoline, available inside pseudo. It makes
it possible to simplify calls such as \arabic{pseudoline} to starred forms
such as \arabic*, like in enumitem. These short forms are available (and
intended) for use in label and ref.

\..
This is a shortcut that hijacks the normal \. accent command, so that
if it is called with . as an argument, the result is \dts. In other words,
the command \.. is really the call \.{.}. For any other arguments, the
original \. is used, so while $1\..n$ produces 1 . . n, \.o still yields ȯ.

\==
This is a shortcut that hijacks the normal \= accent command, so that
if it is called with = as an argument, the result is \eqs. In other words,
the command \== is really the call \={=}. For any other arguments, the
original \= is used, so while $x\==y$ produces x == y, \=o still yields ō.

∗ If the same action must be taken after the last line, you can simply insert it there manually.

https://ctan.org/pkg/beamer
https://ctan.org/pkg/enumitem

4.2 Command and key reference 31

In some contexts, this may not work because \= has reverted to its orig-
inal meaning (as is currently the case if you try to use it within a cus-
tom float, as in Chapter 3, or a standard one such as figure). In this
case, you can restore the pseudo meaning (and the \== shortcut) by using
\RestorePseudoEq. In some cases, you may want to just use \eqs instead.

\\ + - * <⟨overlay specification⟩> [⟨line options⟩]
This row separator is the workhorse of the pseudo package. Just as in a
tabular environment, it signals the end of a line. It is optional after the
list line, where it doesn’t do any work. The command may be followed
by a series of one or more plus (+) signs, each of which will increment the
indentation level before starting a new line; similarly, it may be followed by
one or more minus (-) signs, each of which will decrement the indentation
level. Normally, the command will insert a prefix at the beginning of the
new line; if the star (*) flag is used, this prefix is not inserted.

The optional overlay specifications refer to the hl key, so \\<3> is equiv-
alent to \\[hl<3>]. This applies to the following line, as do other options
set explicitly as optional arguments. Note that options are set locally, be-
fore the new line (and a new scope) is started, so unless they are handled
specifically (in order to carry over), they will have no effect. Thus, even
though all options are available here, not all make sense. (Consult individ-
ual option keys for intended use.)

The pluses and minuses are conceptually part of the command name,
and there should be no whitespace before the star (*). You are, however,
free to insert whitespace before the overlay specification and the line op-
tions. This means that you may, for example, place the overlay specification
at the beginning of the following line in the source.

The \\ command is special in that it also permits a keyless value to
be used among its option; this will then be taken to implicitly use the key
extra-space, which adds extra vertical space below as part of the line
break. This means you can supply a length argument in the same way as
with the ordinary \\ command:
1 no extra space after this line
2 but there’s extra space after this line

3 so this line is a bit lonely

\begin{pseudo}
no extra space after this line \\
but there’s extra space after this line \\[2ex]
so this line is a bit lonely

\end{pseudo}

\arabic*
See *.

begin-tabular = ⟨commands⟩ (no default)
The actual command for beginning the tabular or tabular-like environ-
ment used by pseudo. Normally not needed, as the tabular behavior

https://ctan.org/pkg/pseudo
https://ctan.org/pkg/pseudo

32 Reference

may be modified by other keys, but could be used to use some other
tabular environment, e.g., from packages such as tabularx or longtable.
Rather than \begin{tabularx} and \end{tabularx}, the command ver-
sions \tabularx and \endtabularx should be used. Commands such as
\pseudopos and \pseudopreamble may be used as part of the setup:

\pseudoset{
begin-tabular =

\tabularx{\linewidth}[\pseudopos]{\pseudopreamble},
end-tabular = \endtabularx

}

bol = ⟨commands⟩ (no default, initially empty)
Used to set \pseudobol, which is inserted at the beginning of each line.
See also bol-append and bol-prepend.

bol-append = ⟨commands⟩ (no default)
Locally appends ⟨commands⟩ to bol.

bol-prepend = ⟨commands⟩ (no default)
Similar to bol-append, except that ⟨commands⟩ are added to the beginning
of bol.

\cn{⟨name⟩}
Indicates a constant (such as true or nil). First wraps the argument in
\textnormal and then uses \cnfont. See also \DeclarePseudoConstant.
This is a convenience for typesetting constants, and you may freely redefine
it to whatever you prefer. If some package defines \cn before pseudo is
loaded, pseudo will not overwrite it. The command will still be available,
as \pseudocn. To get the shorter version, simply use \let\cn\pseudocn,
possibly as part of the init hook.

cnfont = ⟨command⟩ (no default, initially \textsc)
Used to set \cnfont, which is used as part of \cn. May be set to take a
single argument or none. Not restricted to actual font commands; you may
also mix in \textcolor or the like.

\cnfont
The command set by the cnfont option. Used as part of \cn.

compact = ⟨boolean⟩ (default true, initially false)
The pseudo environment emulates the built-in LATEX lists when it comes
to spacing above and below, in normal text. If the environment is part of
an ongoing paragraph, paragraphs will be inserted above and below, along
with whitespace specified by topsep (and \parskip). If the environment
begins a paragraph of its own, additional whitespace is added, as specified
by partopsep. It is also possible to specify space to insert to the left of the
environment, using left-margin.

https://ctan.org/pkg/tabularx
https://ctan.org/pkg/longtable
https://ctan.org/pkg/pseudo
https://ctan.org/pkg/pseudo

4.2 Command and key reference 33

However, these spacing commands don’t work well inside \mbox, \fbox,
etc. To avoid getting into trouble, pseudo determines that the environment
should be compact, and drop this surrounding space, if we’re in inner hor-
izontal mode at the beginning of the environment. This will also turn off
setting \prevdepth (cf. prevdepth).

1 if we’re in a node
2 there’s no added space

% In document preamble:
% \usepackage{tikz}
\begin{tikzpicture}

\draw (0,0) node [draw] {%
\begin{pseudo}

if we’re in a node \\+
there’s no added space

\end{pseudo}};
\end{tikzpicture}

This may not be enough, however. For example, if you’re using stan-
dalone to produce individual pseudocode images, this compactness may not
be triggered automatically. In such cases, you can override the behavior us-
ing the compact key, manually specifying whether you want the pseudocode
to be compact or not.

\ct{⟨text⟩}
Indicates that ⟨text⟩ is a comment, (typeset like this). You can customize
the comment appearance using ctfont, ct-left and ct-right:

1 y = 1
2 x = 2 /* this is a comment */
3 z = 345 /* this is another comment */

\pseudoset{
ctfont=\color{black!75},
ct-left=\unskip\qquad\texttt{/* },
ct-right=\texttt{ */}

}
\begin{pseudo}

$y=1$ \\
$x=2$ \ct{this is a comment} \\
$z=345$ \ct{this is another comment}

\end{pseudo}

An alternative to using \ct is to simply set comments in a separate column,
as demonstrated in Sect. 5.4. Or even without a separate column, if you
use a tabularx as described there, and set the tabular width explicitly, you
could insert an \hfill into ct-right and get all end-markers aligned at
the right-hand side:

https://ctan.org/pkg/pseudo
https://ctan.org/pkg/standalone
https://ctan.org/pkg/standalone

34 Reference

1 x = 1
2 y = 2 /* this is a comment */
3 z = 345 /* this is another comment */

Or if you’d rather have the comments right-aligned (like you can in, e.g., al-
gorithm2e), you could use insert the \hfill at the beginning of the ct-left:

1 x = 1
2 y = 2 /* this is a comment */
3 z = 345 /* this is another comment */

ct-left = ⟨text⟩ (no default, initially ()
Text or commands inserted at the start of a comment, when using \ct.

ct-right = ⟨text⟩ (no default, initially))
Text or commands inserted at the end of a comment, when using \ct.

ctfont (no default, initially \textit)
The font of the main text of a comment, when using \ct.

\ctfont
The command set by the ctfont option. Used as part of \ct.

\DeclarePseudoComment{⟨shortcut⟩}{⟨comment⟩}
Used to declare a macro that expands to a comment. For example:
x = y (Important!)

\DeclarePseudoComment \Imp {Important!}
$x = y$ \qquad \Imp

See also \ct. (Note that \pseudoct is used internally here.)

\DeclarePseudoConstant{⟨shortcut⟩}{⟨constant⟩}
Used to declare a macro that expands to a constant. For example:
false

\DeclarePseudoConstant \False {false}
\False

See also \cn. (Note that \pseudocn is used internally here.)

\DeclarePseudoFunction{⟨shortcut⟩}{⟨function⟩}
Used to declare a macro that expands to a function. For example:
length(A) or length[A]

\DeclarePseudoFunction \Ln {length}
\Ln(A) or \Ln[A]

See also \fn. (Note that \pseudofn is used internally here.)

https://ctan.org/pkg/algorithm2e
https://ctan.org/pkg/algorithm2e

4.2 Command and key reference 35

\DeclarePseudoIdentifier{⟨shortcut⟩}{⟨identifier⟩}
Used to declare a macro that expands to a identifier. For example:
rank

\DeclarePseudoIdentifier \Rank {rank}
\Rank

See also \id. (Note that \pseudoid is used internally here.)

\DeclarePseudoKeyword{⟨shortcut⟩}{⟨keyword⟩}
Used to declare a macro that expands to a keyword. For example:
while

\DeclarePseudoKeyword \While {while}
\While

See also \kw. (Note that \pseudokw is used internally here.)

\DeclarePseudoNormal{⟨shortcut⟩}{⟨text⟩}
Used to declare a macro that expands to normal text. For example:

if x == nil
halt with an error message

\DeclarePseudoNormal \Error {halt with an error message}
\begin{pseudo*}[kw]

if $x \== \cn{nil}$ \\+
\Error

\end{pseudo*}

See also \tn. (Note that \pseudotn is used internally here.)

\DeclarePseudoProcedure{⟨shortcut⟩}{⟨procedure⟩}
Used to declare a macro that expands to a procedure. For example:

Euclid(a, b)

\DeclarePseudoProcedure \Euclid {Euclid}
\Euclid(a, b)

See also \pr. (Note that \pseudopr is used internally here.)

\DeclarePseudoString{⟨shortcut⟩}{⟨string⟩}
Used to declare a macro that expands to a string. For example:
“Hello!”

36 Reference

\DeclarePseudoString \Hello {Hello!}
\Hello

See also \st. (Note that \pseudost is used internally here.)

dim
Dims the following line. Equivalent to:

\pseudodefinestyle{dim}{
bol-append = \color{\pseudodimcolor},
setup-append = \color{\pseudodimcolor}

}

May be used to dim out inactive or currently less relevant lines (possibly
using overlays; see page 18).

Gnome-Sort(A)
1 i = 1
2 while i ≤ length[A]
3 if i == 1 or A[i] ≥ A[i − 1]
4 i = i + 1
5 else swap A[i] and A[i − 1]
6 i = i − 1

\begin{pseudo}[kw, dim-color=black!25]*
\hd{Gnome-Sort}(A) \\
[dim] $i = 1$ \\
[dim] while $i \leq \fn{length}[A]$ \\+

if $i \== 1$ or $A[i] \geq A[i-1]$ \\+
$i = i + 1$ \\-

[dim] else \nf swap $A[i]$ and $A[i-1]$ \\+
[dim] $i = i - 1$
\end{pseudo}

See also bol-append, setup-append and dim-color.

dim-color = ⟨color⟩ (no default, initially \pseudohlcolor)
Sets the color used by dim (available as \pseudodimcolor). The initial
value is the one set by hl-color.

\dts
A two-dot ellipsis, for use in the Wirth interval notation 1 . . n, typeset
as Graham, Knuth, and Patashnik did in Concrete Mathematics [3]. Its
definition is the same as in gkpmac. Also accessible via the \.. shortcut.
See also \rng.

https://ctan.org/pkg/gkpmac

4.2 Command and key reference 37

end-tabular (no default, initially \end{tabular})
The actual command for ending the tabular or tabular-like environment
used by pseudo. (See begin-tabular.)

eol = ⟨commands⟩ (no default, initially empty)
Sets \pseudoeol, which is inserted at the end of all but the last line by \\.
See also eol-append and eol-prepend.

eol-append = ⟨commands⟩ (no default)
Locally appends ⟨commands⟩ to eol.

eol-prepend = ⟨commands⟩ (no default)
Similar to eol-append, except that ⟨commands⟩ are added to the beginning
of eol.

\eqs
Two equality signs typeset together as a binary relation, as in x == y (as
opposed to the wider x == y, resulting from $x == y$). It emulates the stix
symbol \eqeq, but for use with Computer Modern (the default LATEX font)
or Latin Modern (available via the lmodern package). It should work just
fine with other fonts. Also accessible via the \== shortcut, and configurable
via eqs-pad, eqs-scale and eqs-sep.

eqs-pad = ⟨muskip⟩ (no default, initially 0.28mu)
The amount of space inserted on each side of \eqs.

eqs-scale = ⟨number⟩ (no default, initially 0.6785)
The amount of horizontal scaling applied to the = signs in \eqs.

eqs-sep = ⟨muskip⟩ (no default, initially 0.63mu)
The amount of space inserted between the two = signs in \eqs.

in-float (pseudo style)
This is a style, defined using \pseudodefinestyle, that is applied to
the contents of every tcolorbox styled using the pseudo/ styles, such as
pseudo/boxed, pseudo/ruled, etc. (Despite the name, it is not limited to
boxes defined with the float key.) The style is initially empty, and acts as
a hook for user customization (similar to pseudo/init, but specifically for
pseudo configuration):
not modified

modified

\pseudodefinestyle{in-float}{kwfont = \sffamily}
\kw{not modified}
\begin{tcolorbox}[pseudo/filled]

\kw{modified}
\end{tcolorbox}

https://ctan.org/pkg/stix
https://ctan.org/tex-archive/info/lmodern
https://ctan.org/pkg/pseudo
https://ctan.org/pkg/pseudo

38 Reference

extra-space = ⟨length⟩ (no default, initially 0pt)
Additional space to be added by \\, below the baseline of the current row.
For example:

1 a

2 b

3 c

\begin{pseudo}[indent-mark, extra-space=2ex]
a \\+

b \\+
c

\end{pseudo}

Note the difference from line-height: Here the space is added below,
just like with the normal \\ command, when its optional argument is used,
whereas with line-height the height and depth of the line are both scaled.
Also, unlike with line-height, with extra-space, nothing is added to the
last line unless it actually ends with a \\ command.

The most likely use-case for this command is to add space after specific
lines, rather than for every line, as in the previous example. For example:

1 one group that is
2 logically connected

3 another group that is
4 separate from the first

\begin{pseudo}
one group that is \\
logically connected \\ [extra-space=1.5ex]
another group that is \\
separate from the first

\end{pseudo}

In fact, extra-space is so closely tied to \\, that you can supply a keyless
value as one of its options, and extra-space will be assumed. So, for
example, in the previous example, you could simply have used \\[1.5ex].

If you want spacing only after the heading (created with \hd), you can
set that using the hd-space key.

\fn{⟨name⟩}(⟨arguments⟩)
Indicates a function name, such as length, and is initially more or less an
alias for \id. The optional arguments (given in parentheses) are typeset
in math mode, so \fn{length}(A) yields length(A). Sometimes square
brackets are used with functions that are meant to indicate array lookups
or some property access or the like. This works in the same manner, so

4.2 Command and key reference 39

\fn{length}[A] yields length[A]. This behavior of picking up arguments
carries over if you define a shortcut, of course:

We’re not in math mode, but the argument of length[A] is.

\def\Ln{\fn{length}}
We’re not in math mode, but the argument of \Ln[A] is.

See also \DeclarePseudoFunction. This is a convenience for typesetting
function names, and you may freely redefine it to whatever you prefer. If
some package defines \fn before pseudo is loaded, pseudo will not overwrite
it. The command will still be available, as \pseudofn. To get the shorter
version, simply use \let\fn\pseudofn, possibly as part of the init hook.

fnfont = ⟨font⟩ (no default, initially \idfont)
Used to set \fnfont, which is used as part of \fn. May be set to take a
single argument or none. Not restricted to actual font commands; you may
also mix in \textcolor or the like.

\fnfont
The command set by the fnfont option. Used as part of \fn.

font = ⟨command⟩ (no default, initially \normalfont)
Sets the base font used in the code lines. Initially, this is just \normalfont,
but the kw switch is a convenient way to set it to the keyword font \kwfont.
This is presumed to be a common case, under the assumption that most
of the pseudocode will consist of either keywords or mathematics. If you’d
rather explicitly mark up your keywords, leaving font as it is, you could
use \kw (or \DeclarePseudoKeyword for common cases):

while pigs don’t fly
keep waiting

\begin{pseudo*}
\kw{while} pigs don’t fly \\+

keep waiting
\end{pseudo*}

\hd{⟨name⟩}(⟨arguments⟩)
Typesets a procedure signature, like \pr, but is intended for use as a header
for a procedure, rather than a procedure call. The difference is that \hd
wraps its contents in a \multicolumn, spanning two columns (i.e., both the
label column and the main code column, but not any additional columns
added using preamble or begin-tabular), using the preamble set with
hd-preamble. For this to work, you need to use the star flag (*) to suppress
the automatic insertion of the prefix:

https://ctan.org/pkg/pseudo
https://ctan.org/pkg/pseudo

40 Reference

Algorithm(x, y, z)
1 setup
2 while condition
3 iterative step
4 return result

\begin{pseudo}*
\hd{Algorithm}(x, y, z) \\
setup \\
\kw{while} condition \\+

iterative step \\-
\kw{return} result

\end{pseudo}

The hd-space key can be used to configure \hd so it sets the extra-space
key. Note that the signature arguments are mandatory; in order to func-
tion properly, \hd must be expandable, and therefore cannot end with an
optional argument, the way \pr does. Also, it is not able to determine
nesting levels of parentheses, so the arguments are terminated upon en-
countering the first closing parentheses. If you want to use parentheses in
the arguments themselves, you must wrap them in braces, or thing will get
wonky:
Foo(G = (V, E) , w, s)
Foo(G = (V, E), w, s)
1 lorem ipsum dolor sit amet, consetetur

\begin{pseudo}*
\hd{Foo}(G=(V, E), w, s) *
\hd{Foo}({G=(V, E), w, s}) \\
lorem ipsum dolor sit amet, consetetur
\end{pseudo}

If some package defines \hd before pseudo is loaded, pseudo will not over-
write it. The command will still be available, as \pseudohd. To get the
shorter version, simply use \let\hd\pseudohd, possibly as part of the init
hook.

hd-preamble = ⟨columns⟩ (no default)
Sets the preamble used by \hd. The result is available as the column type
with name \pseudohdpreamble. (Note that this is the literal column name,
and not a macro containing the name. See preamble for more information.)
Initially, a single left-aligned column with \pseudohpad on either side (see
page 89). If you introduce more columns in preamble, you might want to
increase the number of columns in hd-preamble as well, or at least remove
the right-hand \pseudohpad.

hd-space = ⟨length⟩ (default 0.41386ex, initial value 0pt)
The value extra-space is set to (before any value set manually as part of
\\) after the use of \hd. This is useful if one wants some extra space only

https://ctan.org/pkg/pseudo
https://ctan.org/pkg/pseudo

4.2 Command and key reference 41

after the header. The default is based on clrscode4e,∗ and, so getting spacing
header spacing similar to that package requires only \pseudoset{hd-space}.
(See, e.g., the example on page 22.)

hl (takes no value)
Prepends \pseudohl to bol. Normally used with beamer (see page 18).
Note that if if hpad is set, a warning will be emitted (unless this is overridden
by hl-warn).

hl-color = ⟨color⟩ (no default, initially black!12)
Sets the color used by \pseudohl (available as \pseudohlcolor).

hl-warn = ⟨warn⟩ (default true, initial value true)
Permits turns off (by setting hl-warn to false) the warning that is nor-
mally emitted if you use hl without having used hpad.

hpad = ⟨length⟩ (default 0.3em, initially 0em)
Horizontal padding on either side of the pseudocode. Useful, among other
things when highlighting lines, to have some of the highlighting (i.e., row
color) protrude beyond the text. This key also sets hl-warn to false.

hsep = ⟨length⟩ (no default, initially 0.75em)
The space between the line labels and the code lines, i.e., between the two
columns of numbered pseudo environments.

\id{⟨name⟩}
Indicates an identifier, and is simply an alias for \textit wrapped in
\textnormal. See also \DeclarePseudoIdentifier. This is a convenience
for typesetting identifiers, and you may freely redefine it to whatever you
prefer. If some package defines \id before pseudo is loaded, pseudo will not
overwrite it. The command will still be available, as \pseudoid. To get
the shorter version, simply use \let\id\pseudoid, possibly as part of the
init hook.
It might seem more natural to use \mathit (without \tn), but that may
not give the desired results. First of all, special characters will not behave
as if they’re parts of a name:
foo − bar : baz

$\mathit{foo-bar:baz}$

This may be remedied, e.g., by using the (internal) command \newmcodes@
from amsopn, but the kerning, spacing and font application in the result
still leaves something to be desired:
foo-bar : baz

$\mathit{\newmcodes@ foo-bar:baz}$

∗ And older versions, for that matter.

https://www.cs.dartmouth.edu/~thc/
https://ctan.org/pkg/beamer
https://ctan.org/pkg/pseudo
https://ctan.org/pkg/pseudo
https://ctan.org/pkg/amsopn

42 Reference

Compare this to a simple \textit:
foo-bar:baz

$\textit{foo-bar:baz}$

The decision to use \textit means that you can’t use, say, subscripts or the
like as parts of an identifier, or mix in greek letters or other mathematical
symbols. Though you can still easily typeset things like foo-α, you’ll have to
mix in the math mode more explicitly (in this case, $\id{foo-$\alpha$}$).
If some package defines \id before pseudo is loaded, pseudo will not over-
write it. The command will still be available, as \pseudoid. To get the
shorter version, simply use \let\id\pseudoid, possibly as part of the init
hook.

idfont = ⟨font⟩ (no default, initially \textit)
Used to set \idfont, which is used as part of \id. May be set to take a
single argument or none. Not restricted to actual font commands; you may
also mix in \textcolor or the like.

\idfont
The command set by the idfont option. Used as part of \id.

indent-length = ⟨length⟩ (no default, initially empty)
How large each indentation step is. If this key is not specified, indent-text
is used to calculate one the indent length instead.

indent-level = ⟨level⟩ (no default, initially 0)
Sets the current indentation level. This is most usefully set on pseudo
environment, in concert with start:∗

1 this is
2 the first part

This is some text interrupting the code.

3 this is the
4 second part

∗ The \strut here is just to even out spacing above and below the text, which doesn’t have
fixed-height lines like the pseudocode.

https://ctan.org/pkg/pseudo
https://ctan.org/pkg/pseudo

4.2 Command and key reference 43

\begin{pseudo}
this is \\+
the first part

\end{pseudo}

\medskip \strut
This is some text interrupting the code.
\medskip

\begin{pseudo}[start=3, indent-level=1]
this is the \\-
second part

\end{pseudo}

indent-mark = ⟨mark⟩ (default vertical line, initially empty)
A mark used to indicate the start of each step of indentation.∗ Any horizon-
tal space taken up by this mark is added to the indentation; to prevent this,
wrap the mark in \rlap (and, if necessary, in \smash, to handle vertical
space). The following example uses indent-mark=\rlap{\cdot}:

1 repeat n − 1 times
2 · for each edge uv
3 · · update estimate for v via u
4 for each edge uv
5 · if estimate for v improves via u
6 · · return false
7 return true

By default, the indent mark is a vertical line that scales with the line height,
so each indented block is indicated by a single unbroken vertical line. It
also “undoes” its own width, so it doesn’t impact the indentation. The
following example uses the indent-mark key with no argument:

1 repeat n − 1 times
2 for each edge uv
3 update estimate for v via u
4 for each edge uv
5 if estimate for v improves via u
6 return false
7 return true

This default mark may be configured by using the keys indent-mark-color,
indent-mark-width and indent-mark-shift.

indent-mark-color = ⟨color⟩ (no default, initially lightgray)
Sets the color to be used by the default indent-mark. See indent-mark-shift
for an example.

∗ Similar to c:indentLine char in the vim plugin indentLine.

https://github.com/Yggdroot/indentLine

44 Reference

indent-mark-shift = ⟨length⟩ (default .5em, initial value 0pt)
Sets the horizontal shift (from the actual start of an indent step) at which
to render the default indent-mark. The following example uses the default
value, and sets indent-mark-width to .4pt and indent-mark-color to
black, to approximate the look of the indent mark in algorithm2e.

1 repeat n − 1 times
2 for each edge uv
3 update estimate for v via u
4 for each edge uv
5 if estimate for v improves via u
6 return false
7 return true

indent-mark-width = ⟨width⟩ (no default, initially .6pt)
Sets the width of the default indent-mark. See indent-mark-shift for
an example. The default value of .6pt corresponds to the tikz line width
semithick.

indent-text = ⟨text⟩ (no default, initially \pseudofont\kw{else}\␣)
The size of each indentation step is set to the width of the ⟨text⟩. The
default is set up so that code following on the same line as else will be
properly aligned, as in:

if condition
something

else something else

If you’re not going to put code on the same line as else, for example, you
might want a different indentation size. To set it to some specific length,
you could use the indent-length key.

init = ⟨commands⟩ (no default, initially empty)
Used to set the initialization hook, which is inserted at the beginning of the
pseudo environment (right before the actual tabular environment begins,
as defined by begin-tabular). See also init-append and init-prepend.

init-append = ⟨commands⟩ (no default)
Locally appends ⟨commands⟩ to init.

init-prepend = ⟨commands⟩ (no default)
Similar to init-append, except that ⟨commands⟩ are added to the begin-
ning of init.

kw (takes no value)
Sets font to \kwfont.

\kw{⟨name⟩}
Indicates a keyword. First wraps the argument in \textnormal and then
adds \kwfont. See also \DeclarePseudoKeyword. This is a convenience

https://ctan.org/pkg/algorithm2e
https://ctan.org/pkg/pgf

4.2 Command and key reference 45

for typesetting keywords, and you may freely redefine it to whatever you
prefer. If some package defines \kw before pseudo is loaded, pseudo will not
overwrite it. The command will still be available, as \pseudokw. To get
the shorter version, simply use \let\kw\pseudokw, possibly as part of the
init hook.

kwfont = ⟨font⟩ (no default, initially \fontseries{b}\selectfont)
Used to set \kwfont, which is used as part of \kw. May be set to take
a single argument or none. Not restricted to actual font commands; you
may also mix in \textcolor or the like. Note, however, that with the kw
switch, you set font = \kwfont, which is then applied as a font-switching
command for each entire line, taking no argument. If you provide an com-
mand requiring an argument, the \kw command will still work, but the kw
switch won’t:

foo bar

vs.

foo bar

\pseudoset{kw}
\begin{pseudo*}[kwfont=\textsf] % breaks kw option

foo \kw{bar}
\end{pseudo*}
vs.\
\begin{pseudo*}[kwfont=\sffamily] % works with kw option

foo \kw{bar}
\end{pseudo*}

The initial value isn’t quite as straightforward as indicated, however. For
more info, see \kwfont.

\kwfont
The command set by the kwfont option. Used as part of \kw. Its initial
definition is essentially \fontseries{b}\selectfont, except the first time
it’s called (normally when evaluating the initial value of indent-text), it
also runs a check to see if the font selection worked, as in some cases (such
as in a default beamer presentation), the non-extended bold may not be
available. In that case, it defaults to an extended bold (\bfseries) instead.
At this point, the command is redefined to \fontseries{b}\selectfont or
\bfseries, as appropriate (i.e., without this check). So, while \kw{hello}
produces the non-extended hello in a default LATEX document, it yields the
extended hello in a default beamer presentation. Perhaps more clearly, this
is the result in plain LATEX (using lmodern):

while
while
while

https://ctan.org/pkg/pseudo
https://ctan.org/pkg/pseudo
https://ctan.org/pkg/beamer
https://ctan.org/pkg/beamer
https://ctan.org/tex-archive/info/lmodern

46 Reference

\textbf{while}\\ % Extended
\kw{while}\\ % Keyword
{\fontseries{b}\selectfont while} % Non-extended

The same code results in the the following in beamer:
while
while
while

You’ll also get a font warning,∗ though only once, as it’s suppressed after
the first occurrence, so the fact that the font selection doesn’t work on the
last line isn’t reported.

The current implementation of \kwfont actually piggybacks on this
warning to determine if the non-extended bold is available. This means
that if you’ve tried (and failed) to use \fontseries{b} before the fist
use of \kwfont, the fallback (i.e., extended bold) won’t be triggered.

Note that indent-text (which will tend to be the first occurrence use
of \kwfont) won’t be evaluated (to determine indent-length) until you
actually start a pseudo environment, so if you’re aware that you don’t have
non-extended bold available, and you set kwfont = \bfseries, for example,
there will be no attempt to use the non-extended version, and you won’t
get the font warning that the default implementation produces in that case.

label = ⟨commands⟩ (no default, initially \arabic*)
Used to format the line label/number. For example, to emulate clrscode4e
rather than clrscode3e, you’d use label = \small\arabic*. You can also
add punctuation or the like, as in enumitem:

1: print “Hello, label!”
2: goto 1

\pseudoset{kw, label=\footnotesize\arabic*:}

\begin{pseudo}
print \st{Hello, label!} \label{li:label} \\
goto \tn{\ref{li:label}}
\end{pseudo}

Make sure to use \label in the actual code line, as here, and not in
the number cell (which is generally not explicitly written, anyway).

∗ Of course, if you use a different font or theme, e.g., with the beamer command
\usefonttheme{serif}, you may not have any issues to begin with.

https://ctan.org/pkg/beamer
https://www.cs.dartmouth.edu/~thc/
https://ctan.org/pkg/clrscode3e
https://ctan.org/pkg/enumitem
https://ctan.org/pkg/beamer

4.2 Command and key reference 47

As can be seen from the example, \ref is unaffected by label, and
in many cases that’s what you want—as apposed to, say, “goto 1:”. In
some cases, however (especially when using one of the other formatting
commands, such as \alph or \roman), you do want the reference format to
reflect the original, or be similar in some way. To do that, you use the ref
key.

label-align = ⟨column⟩ (no default, initially r)
Used to specify the alignment of the label of each line. Whatever is pro-
vided is stored as a column type (named \pseudolabelalign), which is a
part of the default preamble. In other words, beyond the basic l and r (for
left- and right-justified), you can supply anything that would be valid as
part of the preamble (possibly using functionality from the array package).
If you want to get creative here, though, it might be easier to get the results
you want by specifying your own preamble in full.

left-margin = ⟨length⟩ (no default, initially 0pt)
Sets the left margin of the pseudo environment, i.e., how far it is indented
wrt. the surrounding text:
Lorem ipsum dolor sit amet:

1 consetetur sadipscing elitr
2 sed diam nonumy eirmod tempor

Invidunt ut labore et dolore magna.

Lorem ipsum dolor sit amet:

\begin{pseudo}[left-margin=1.25em]
consetetur sadipscing elitr \\
sed diam nonumy eirmod tempor
\end{pseudo}

Invidunt ut labore et dolore magna.

To have the environment indented as (the beginning of) any normal para-
graph, you could use left-margin = \parindent. Note that left-margin,
as well as the spacing above and below the pseudo environment, is turned
off inside \mbox and the like:

I’m a livin’ in a box
I’m a livin’ in a cardboard box

\pseudoset{left-margin=1cm} % Won’t affect box contents
\fbox{\begin{pseudo*}
I’m a livin’ in a box \\
I’m a livin’ in a cardboard box
\end{pseudo*}}

https://ctan.org/pkg/array

48 Reference

As opposed to with topsep and partopsep, we are not working with one
of the built-in list spacing commands; \leftmargin has no effect on this
key (which is why the hyphenated naming style of other keys such as
label-align or indent-text is also adopted for left-margin). See also
compact.

line-height = ⟨factor⟩ (no default, initially 1)
The ⟨factor⟩ with which to multiply the ordinary line height. For simple,
sparse pseudocode, the oridnary line height works well, but if your code gets
too crowded with text and notation, you may wish to increase line-height.
To emulate, e.g., the \jot set by amsmath (which is 0.25\baselineskip),
you could use 1.25, though even 1.1 should help in many cases.

\nf
Switch to the normal font (i.e., without bold or italics, etc.). If some pack-
age defines \nf before pseudo is loaded, pseudo will not overwrite it. The
command will still be available, as \normalfont. To get the shorter ver-
sion, simply use \let\nf\normalfont, possibly as part of the init hook.
See also \tn.

partopsep = ⟨length⟩ (no default, initially \partopsep)
Sets a pseudo-local copy of \partopsep for use in vertical spacing above
and below the pseudo environment. See also compact.

pause (takes no value)
Equivalent to eol-append = \pause (see Chapter 2).

pos = ⟨depth⟩ (no default, initially t)
Specifies the vertical position of the pseudo environment, i.e., whether it
should be vertically aligned on the top (t) or bottom (b) row, or be verti-
cally centered (no value). This is equivalent to the (optional) pos argument
to tabular, and is in fact supplied to the internal tabular environment.
The initial value is t, which makes sure the spacing above is consistent,
regardless of the depth of the previous line. Here are two examples, set
side by side:

x

1 foo
2 bar

f(x)

1 frozz
2 bozz

The pseudo environments are properly aligned. If, instead, we set pos =
{}, they will not be, because f(x) has more depth than x:∗

x

1 foo
2 bar

f(x)

1 frozz
2 bozz

If compact is set to true, pos is automatically emptied like this—a behavior
which can, of course, be overridden:

∗ This was the behavior in older versions of pseudo.

https://ctan.org/pkg/amsmath
https://ctan.org/pkg/pseudo
https://ctan.org/pkg/pseudo
https://ctan.org/pkg/pseudo
https://ctan.org/pkg/pseudo

4.2 Command and key reference 49

Lorem foo
bar ipsum

foo
bar dolor foo

bar
.

Lorem
\begin{pseudo*}[compact]

foo \\ bar
\end{pseudo*}
ipsum
\begin{pseudo*}[compact, pos=b]

foo \\ bar
\end{pseudo*}
dolor
\begin{pseudo*}[compact, pos=t]

foo \\ bar
\end{pseudo*}.

\pr{⟨name⟩}(⟨arguments⟩)
Indicates a procedure name, such as Quicksort, and is initially more or
less an alias for \cn. The optional arguments (in parentheses) are type-
set in math mode, so \pr{Quicksort}(A,p,r) yields Quicksort(A, p, r).
See also \DeclarePseudoProcedure. This is a convenience for typesetting
procedure names, and you may freely redefine it to whatever you prefer. If
some package defines \pr before pseudo is loaded, pseudo will not overwrite
it. The command will still be available, as \pseudopr. To get the shorter
version, simply use \let\pr\pseudopr, possibly as part of the init hook.

preamble = ⟨columns⟩ (no default)
Sets the preamble to be used by the internal tabular. The result is available
as the column type with name \pseudopreamble. (Note that this is the
literal column name, and not a macro containing the name. Initially, pseudo
uses a tabular as redefined by the array, which prevents the expansion of
whatever is provided as its preamble, and so we supply the preamble in the
form of a single “column” instead.) For the default value, see the actual
implementation on page 89 as well as the explanation in Sect. 4.1.

prefix = ⟨commands⟩ (no default)
This is the text inserted at the beginning of the following line by \\ (and
by \begin{pseudo}), unless you use the star (*) flag. Unless modified, it
inserts the code necessary to label the line and to move into the second
column, where the actual code is inserted by the user. For the default
value, see the actual implementation on page 89 as well as the explanation
in Sect. 4.1.

prevdepth = ⟨depth⟩ (no default, initially .3\baselineskip)
This value is used to properly adjust the vertical distance to any following
text, by setting \prevdepth to ⟨depth⟩, unless compact is set to true. In
general, it should not be necessary to change its value.∗

∗ In previous versions, \prevdepth was not set. To get the old behavior, set prevdepth = 0pt.

https://ctan.org/pkg/pseudo
https://ctan.org/pkg/pseudo
https://ctan.org/pkg/pseudo
https://ctan.org/pkg/array

50 Reference

prfont = ⟨font⟩ (no default, initially \cnfont)
Used to set \prfont, which is used as part of \pr. May be set to take a
single argument or none. Not restricted to actual font commands; you may
also mix in \textcolor or the like.

\prfont
The command set by the prfont option. Used as part of \pr.

\begin{pseudo}[⟨options⟩] * <⟨overlay specification⟩> [⟨line options⟩]
⟨pseudocode⟩

\end{pseudo}
The actual environment in which the pseudocode is typeset. The ⟨options⟩
are local to the environment, while the ⟨line options⟩ are local to the fol-
lowing line (in the same manner as those set in \\; i.e., only some will
actually have any effect). The star (*) and ⟨overlay specification⟩ act just
like those on \\. Note that if you wish to specify ⟨line options⟩ without
the star or the ⟨overlay specification⟩, you need to supply at least an empty
pair of brackets for the global options:

1 First line
2 Second line

vs.

1 First line
2 Second line

\pseudoset{hpad} % because we’re using hl
\begin{pseudo}[][hl]
First line \\
Second line
\end{pseudo}
vs.\
\begin{pseudo}[hl]
First line \\
Second line
\end{pseudo}

There are no +/- flags here, unlike for \\; if needed, you can use indent-level.

\begin{pseudo*}[⟨options⟩] * <⟨overlay specification⟩> [⟨line options⟩]
⟨pseudocode⟩

\end{pseudo*}
An unnumbered version of the pseudo environment. Equivalent to pseudo,
but with the starred style applied (see page 99). Unless this style is
altered, this means that the label column is removed from the preamble,
and the prefix is reduced to only bol.

pseudo/boxed (tcolorbox style)
A style defined for use with tcolorbox (i.e., not with \pseudoset).

https://ctan.org/pkg/tcolorbox
https://ctan.org/pkg/tcolorbox

4.2 Command and key reference 51

A simple, manually numbered example:

Algorithm 1 Hello(x)
1 print “Hello,” x

\begin{tcolorbox}[pseudo/boxed,
title={Algorithm 1\enskip \pr{Hello}(x)}]
\begin{pseudo}

\kw{print} \st{Hello,} x
\end{pseudo}

\end{tcolorbox}

To create a floating box, use the tcolorbox key \float. In general, it
is probably better to create such boxes with \newtcbtheorem. For more
information on using tcolorbox styles, see Chapter 3.

pseudo/booktabs (tcolorbox style)
A style defined for use with tcolorbox (i.e., not with \pseudoset). A simple
example:

Algorithm 1 Hello(x)

1 print “Hello,” x

See the pseudo/boxed reference entry and Chapter 3 for more information.

pseudo/boxruled (tcolorbox style)
A style defined for use with tcolorbox (i.e., not with \pseudoset). A simple
example:

Algorithm 1 Hello(x)

1 print “Hello,” x

See the pseudo/boxed reference entry and Chapter 3 for more information.

pseudo/filled (tcolorbox style)
A style defined for use with tcolorbox (i.e., not with \pseudoset). A simple
example:

Algorithm 1 Hello(x)

1 print “Hello,” x

See the pseudo/boxed reference entry and Chapter 3 for more information.

pseudo/init = ⟨commands⟩ (tcolorbox hook)
Can be used to define the contents of a hook that is inserted before the
contents of a tcolorbox box styled with one of the pseudo/ styles, such as
pseudo/boxruled, etc. It is used as part of the tcolorbox configuration, and

https://ctan.org/pkg/tcolorbox
https://ctan.org/pkg/tcolorbox
https://ctan.org/pkg/tcolorbox
https://ctan.org/pkg/tcolorbox
https://ctan.org/pkg/tcolorbox
https://ctan.org/pkg/tcolorbox
https://ctan.org/pkg/tcolorbox
https://ctan.org/pkg/tcolorbox
https://ctan.org/pkg/tcolorbox
https://ctan.org/pkg/tcolorbox
https://ctan.org/pkg/tcolorbox

52 Reference

is not set using \pseudoset. Useful, e.g., for setting \parskip or tabstops
(with the tabto package).

Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam non-
umy eirmod tempor invidunt ut labore et dolore magna.

At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd
gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet.

\begin{tcolorbox}[pseudo/boxed, pseudo/init=\parskip 2ex]
Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed
diam nonumy eirmod tempor invidunt ut labore et dolore magna.

At vero eos et accusam et justo duo dolores et ea rebum. Stet
clita kasd gubergren, no sea takimata sanctus est Lorem ipsum
dolor sit amet.
\end{tcolorbox}

pseudo/ruled (tcolorbox style)
A style defined for use with tcolorbox (i.e., not with \pseudoset). A simple
example:

Algorithm 1 Hello(x)

1 print “Hello,” x

See the pseudo/boxed reference entry and Chapter 3 for more information.

pseudo/tworuled (tcolorbox style)
A style defined for use with tcolorbox (i.e., not with \pseudoset). A simple
example:

Algorithm 1 Hello(x)
1 print “Hello,” x

See the pseudo/boxed reference entry and Chapter 3 for more information.

\pseudobol
The command set by the bol option. Used as part of \pseudoprefix.

\pseudodefinestyle{⟨name⟩}{⟨options⟩}
Used to define “styles” or meta-keys, i.e., shortcuts for setting several keys
to given values (used, e.g., to define starred). The ⟨name⟩ is simply the
name of the new meta-key, and the ⟨options⟩ are just what you’d provide
to, e.g., \pseudoset.

\pseudoeol
The command set by the eol option. Used as part of \\. It is inserted
between lines, but not after the last one.

https://ctan.org/pkg/tabto
https://ctan.org/pkg/tcolorbox
https://ctan.org/pkg/tcolorbox
https://ctan.org/pkg/tcolorbox
https://ctan.org/pkg/tcolorbox

4.2 Command and key reference 53

\pseudofont
The command set by the font option. Used as part of \pseudosetup. It
is used to set up the font for each pseudocode line. (See also kw.)

\pseudohl
This is the command inserted as bol by the hl switch. Initially, it’s just
a \rowcolor using the color set by hl-color, but you could redefine it to
whatever you wish.

\pseudohpad
Used on the left- and right-hand sides of preamble. Conceptually, it in-
serts the horizontal space specified by hpad. To play nice with \rowcolor,
however, it is not used in a @{...} column; rather, it’s placed in >{...}
and <{...} modifiers, and the actual space inserted has \tabcolsep sub-
tracted.

\pseudoindent
The command set by the indent-length and indent-mark options. Used
in \pseudosetup. More precisely, indent-length is stored textually, and
is converted to the length \pseudoindentlength when entering a pseudo
environment (so that units like em and ex adapt to the current font). If no
indent-mark is set, the \pseudoindent command then inserts a horizontal
space of length \pseudoindentlength ×current indent level. Otherwise,
one indent-mark and a horizontal space of length \pseudoindentlength
is inserted for each level of indentation up to the current indentation level.
(This horizontal space is measured from the left edge of the indent-mark.)

\pseudolabel
The command set by the label option. Used as part of \pseudoprefix.

pseudoline
Counter for pseudocode lines. See also *.

\pseudopos
The command set by the pos option. Used as part of the initial value of
begin-tabular.

\pseudopreamble
The command set by the preamble option. Used as part of the initial value
of begin-tabular.

\pseudoprefix
The command set by the prefix option. Used as part of \\.

\pseudosavelabel
Used as part of \pseudosetup to save the pseudoline counter for use in
\label and \ref. The pseudoline counter is incremented as part of the
\pseudolabel command, but that’s done using a plain \stepcounter, as
any use of \label will presumably be placed in the pseudocode line (i.e., the
next column). To save the value there, \pseudosavelabel first decrements
the counter, and then uses \refstepcounter.

54 Reference

\pseudoset{⟨options⟩}
Used to set the configuration keys of the pseudo package (using l3keys with
pseudo as the module). These may also be set as optional arguments to
the pseudo and pseudo* environments. For example, if you’d like to switch
to \rm as your base font, you could use \pseudoset{font = \rm}.

\pseudosetup
The command set by the setup option. Used as part of the preamble.
Not to be confused with \pseudoset.

ref = ⟨commands⟩ (initially empty, default \pseudolabel)
Shortcut for setting the \thepseudoline command. If used without argu-
ments, it will use the value supplied to label.
(a) print “Hello, ref!”
(b) goto 4.2

\pseudoset {
label = (\textsc{\alph*}),
ref = \Alph*,
hsep = .5em

}

\begin{pseudo}
print \st{Hello, ref!} \label{li:ref} \\
goto \tn{\ref{li:ref}}
\end{pseudo}

\RestorePseudoBackslash
Command similar to the \arraybackslash of the array package. Switches
the definition of \\ to the one used by pseudo. Useful if you’ve used some
code that modifies \\ for its own purposes (such as \raggedleft or the
like).

\RestorePseudoEq
Similar to \RestorePseudoBackslash. Switches the definition of \= to the
one used by pseudo. Useful if \= reverts to its original definition in some
context (see \==).

\rng
Used to typeset a range, slice or subarray, or simply to indicate the indices
of an array, similar to \dts, but using a colon rather than two dots placed
horizontally. Uses the same spacing as \dts, as opposed to a plain :, which
adds more space (more suitable, for example, to set-builder notation).
Compare A[1 : n] to A[1 : n].

Compare $A[1\rng n]$ to $A[1:n]$.

https://ctan.org/pkg/pseudo
https://ctan.org/pkg/l3keys
https://ctan.org/pkg/array
https://ctan.org/pkg/pseudo
https://ctan.org/pkg/pseudo

4.2 Command and key reference 55

setup = ⟨commands⟩ (no default)
The setup part of each pseudocode line: Save the line counter (using
the \pseudosavelabel command), insert the proper indentation (with
\pseudoindent) and switch to the correct font (\pseudofont).

Rather than setting setup directly, you may wish to add commands using
setup-append or setup-prepend.

setup-append = ⟨commands⟩ (no default)
Locally appends ⟨commands⟩ to setup.

setup-prepend = ⟨commands⟩ (no default)
Similar to setup-append, except that ⟨commands⟩ are added to the begin-
ning of setup.

\st{⟨string⟩}
Typesets ⟨string⟩ with added quotes using \stfont. (The entire thing is
wrapped in \textnormal.) For example, print \st{42} yields:

print “42”

See also \DeclarePseudoString. This is a convenience for typesetting
strings, and you may freely redefine it to whatever you prefer. If some
package defines \st before pseudo is loaded, pseudo will not overwrite it.
The command will still be available, as \pseudost. To get the shorter
version, simply use \let\st\pseudost, possibly as part of the init hook.

st-left = ⟨text⟩ (no default, initially ‘‘)
Text or commands inserted at the start of a string, when using \st.

st-right = ⟨text⟩ (no default, initially ’’)
Text or commands inserted at the end of a string, when using \st.

starred (takes no value)
The style (defined by \pseudodefinestyle) used by the pseudo* envi-
ronment. You may modify this (again using \pseudodefinestyle) if you
wish.

start = ⟨number⟩ (no default, initially 1)
Sets the starting line number:

10 Maybe we’re continuing from some earlier code?
11 Anyway, let’s keep going!

\begin{pseudo}[start=10]
Maybe we’re continuing from some earlier code? \\
Anyway, let’s keep going!
\end{pseudo}

See also indent-level.

https://ctan.org/pkg/pseudo
https://ctan.org/pkg/pseudo

56 Reference

stfont
Used to set \stfont, which is used as part of \st. May be set to take a
single argument or none. Not restricted to actual font commands; you may
also mix in \textcolor or the like.

\stfont
The command set by the stfont option. Used as part of \st.

\tn{⟨text⟩}
An alias for \textnormal, to break out of the font set using the font key,
for inserting ordinary prose between the keywords. For example, to get the
result “for every node v ∈ V ”, one might write:

for \tn{every node} $v\in V$

This is equivalent to using \textnormal{every node}. If some package
defines \tn before pseudo is loaded, pseudo will not overwrite it. The com-
mand will still be available, as \textnormal. To get the shorter version,
simply use \let\tn\textnormal, possibly as part of the init hook.

topsep = ⟨length⟩ (no default, initially \topsep)
Sets a pseudo-local copy of \topsep for use in vertical spacing above and
below the pseudo environment. See also compact.

unknown
Unknown keys are checked for beamer overlay specifications. That is, if an
unknown key has the form

⟨name⟩<⟨overlay specification⟩> = ⟨value⟩

then it does not trigger an error, but, if beamer is used, is rewritten to:

\only<⟨overlay specification⟩>{\pseudoset{⟨name⟩ = ⟨value⟩}}

If beamer is not used, the key is simply ignored.

Currently, using commas in the ⟨overlay specification⟩ doesn’t work.
As a workaround, you can use the key multiple times. That is, rather
than dim<1,3>, use dim<1>, dim<3>.

If an unknown key does not take the form of a key with an overlay speci-
fication, a second special case is also handled: If we’re processing arguments
for \\, and the key does not have an associated (non-blank) value, we treat
the key instead as a value, whose implicit key is extra-space. This means
that you can specify extra space in the ordinary way, with \\[1.5ex], etc.

https://ctan.org/pkg/pseudo
https://ctan.org/pkg/pseudo
https://ctan.org/pkg/pseudo
https://ctan.org/pkg/beamer
https://ctan.org/pkg/beamer
https://ctan.org/pkg/beamer

4.2 Command and key reference 57

Unknown Keys and Defaults
Because of current limitations on how keys are handled, unknown keys
cannot have defaults, and so there is no way to insert a marker for
when no value is provided, which could be used to determine whether to
use \pseudoset{⟨name⟩ = ⟨value⟩} or simply \pseudoset{⟨name⟩}. In-
stead, if an empty value is provided to the unknown key, that is treated
in the same way as when the key is used without a value, resulting in
\pseudoset{⟨name⟩} rather than \pseudoset{⟨name⟩ = }.

58 Reference

Chapter 5

But how do I . . .

Some functionality is not built in, but is still fairly easy to achieve. Some
streamlining may be added in future versions.

5.1 . . . prevent paragraph indentation after pseudo?
If you want to keep the pseudocode as part of a surrounding paragraph, you
could have it not start its own, i.e., not have an empty line before it. This will
reduce the amount of spacing as well; if you’d rather have that reduced, you
could simply drop the empty line after the environment:

Text before

\begin{pseudo}
pseudocode

\end{pseudo}
%
Text after

The effect would then be the following:

1 pseudocode

No indentation here, and normal spacing. If, however, you wish to suppress in-
dentation after all instances of pseudo, you could use the noindentafter package,
as follows:

\usepackage{noindentafter}
\NoIndentAfterEnv{pseudo}
\NoIndentAfterEnv{pseudo*}

If you wish to override this, and indent a given paragraph after all, you can
simply use the \indent command.

59

https://ctan.org/pkg/noindentafter

60 But how do I . . .

5.2 . . . get log-like functions?

There’s no built-in command for math-roman function names, as used in log and
sin, etc. (other than just setting fnfont, if you want it everywhere). If you wish
to define your own, you could use \operatorname or \DeclareMathOperator.
For example:

1 if my-func x == 1
2 y = my-func(z + 1)

% In document preamble:
% \usepackage{amsmath}
% \DeclareMathOperator{\MyFunc}{my-func}
\begin{pseudo}[kw]
if $\MyFunc x \== 1$ \\+

$y = \MyFunc(z + 1)$
\end{pseudo}

The spacing is then correct whether you enclose the arguments in parentheses
or not.

5.3 . . . unbold punctuation?

If you use the kw key, all pseudocode not in math mode will end up using the
keyword font (\kwfont), which initially is bold. Though some do typeset, e.g.,
grouping braces in boldface, you might not want to do that; the same goes for,
say, line-terminating semicolons. The theoremfont option of, e.g., newtx does
something similar (for italics), but uses a custom font for that. Packages like
emrac rely on straightforward textual substitution, replacing certain characters
with marked-up ones, but the way things are set up at the moment, our font
command won’t have access to the entire line when it’s executed.

If you’re adventurous, it’s not hard (using the xparse argument type u) to
make a version that does gobble up the entire line, up to and including \\ (and
you could then use the regular expression functionality from expl3, presumably
also reinserting \\). A simpler solution is to just use \DeclarePseudoNormal.
Here’s an example based on pseudocode from Knuth [4]:

procedure printstatistics;
begin integer j;

write(“Closed sets for rank”, r, “:”);
j := L[h];
while j ̸= h do

begin writeon(S[j]); j := L[j] end;
end;

https://ctan.org/pkg/newtx
https://ctan.org/pkg/emrac
https://ctan.org/pkg/xparse
https://ctan.org/pkg/expl3

5.4 . . . use tabularx? 61

% In document preamble:
% \usepackage{mathtools}
\let\gets\coloneqq

\pseudoset{kw, indent-length=2em, line-height=1.1}

\DeclarePseudoNormal \; ;

\begin{pseudo*}
procedure \id{printstatistics}\; \\
begin integer j\; \\+

\fn{write}(\st{Closed sets for rank}, r, \st{:})\; \\
$j \gets L[h]$\; \\
while $j \neq h$ do \\+

begin \fn{writeon}(S[j])\; $j\gets L[j]$ end\; \\--
end\;
\end{pseudo*}

If you’d really like to avoid the extra backslashes, you could make the relevant
punctuation active (though that’s probably a bit risky; make sure to only do it
locally, at the very least):

begin integer j;

\DeclarePseudoNormal \semi ;

\catcode‘\;=\active
\let;\semi

\begin{pseudo*}[kw]
begin integer j; % Look! The semicolon isn’t bold!

\end{pseudo*}

5.4 . . . use tabularx?
You can use other tabular packages such as tabularx via begin-tabular and
end-tabular. Let’s say, for example, that you wish to extend the pseudo
environment to fill out the entire line, and set up a new column for comments.
You could achieve that as follows:∗

Counting-Sort(A, k) Find positions by counting
1 C = an array of k zeros Element frequencies
2 for i = 1 to A.length Count all elements
3 . . . Etc.

∗ For an explanation of the use of [t], see the documentation of the pos option.

https://ctan.org/pkg/tabularx

62 But how do I . . .

\pseudodefinestyle{fullwidth}{
begin-tabular =
\tabularx{\linewidth}[t]{@{}

r % Labels
>{\pseudosetup} % Indent, font, ...
X % Code (flexible)
>{\leavevmode\small\color{gray}} % Comment styling
p{0.5\linewidth} % Comments (fixed)
@{}},

end-tabular = \endtabularx,
setup-append = \RestorePseudoEq

}
\begin{pseudo}[kw, fullwidth, line-height=1.1]*

\hd{Counting-Sort}(A, k) & Find positions by counting \\
$C = \tn{an array of k zeros}$ & Element frequencies \\
for $i = 1$ to $A.\id{length}$ & Count all elements \\+
\dots & Etc.

\end{pseudo}

Note that using the \color command in a >{...} modifier with a p column
places the text in a new paragraph, on the next line; you’ll need to insert
\leavevmode or the like to prevent that. This is true also of normal tabular
environments. Also note that tabularx environments with X columns don’t
interact nicely with \=; so if you wish to use \==, you can reassert the definition
by adding >{\RestorePseudoEq} before each column.∗

See the tabularx documentation (page 4) for an explanation of why we can’t
use \begin{tabularx} and \end{tabularx}. Also, because tabularx passes its
contents as the argument to a macro, the parsing pseudo uses to determine if \\
is at the end of the last line doesn’t work; if you add \\ at the end here, you’ll
introduce an empty line.

For simplicity, I’ve used @{} to remove space on either side. For hpad to
work, you should use >{\pseudohpad} and <{\pseudohpad} instead, as in the
standard preamble (see page 89). To keep things configurable, you might also
want to use \pseudolabelalign, rather than r.

5.5 . . . get tab stops?
Some packages, such as clrscode3e, use an actual tabbing environment inter-
nally. While this may be a bit brittle (e.g., creating problems if you wish to
insert your pseudocode into a tikz node—one of the goals of pseudo), it does
mean that you can use the tabbing command \> manually, to align various
construct.

If all your tabbing is done before the text on a given code line, you can
achieve this in pseudo as well, by using the + and - modifiers. (For example, the
tab stops in clrscode3e are set at fixed intervals, just like in pseudo.) But what
if you’d like to align something that comes later, such as comments after code

∗ You can also, of course, just use \eqs instead.

https://ctan.org/pkg/tabularx
https://ctan.org/pkg/tabularx
https://ctan.org/pkg/pseudo
https://ctan.org/pkg/clrscode3e
https://ctan.org/pkg/pgf
https://ctan.org/pkg/pseudo
https://ctan.org/pkg/pseudo
https://ctan.org/pkg/clrscode3e
https://ctan.org/pkg/pseudo

5.5 . . . get tab stops? 63

lines? You can’t simply use \hspace, of course, unless the code lines themselves
have exactly the same length.

One solution is to use an additional column, as discussed in Sect. 5.4, but
you could also make creative use of the \rlap command, which prevents its
contents from taking up horizontal space:∗

This is some textAnd here is some more

\noindent\rlap{This is some text}%
And here is some more

By using \rlap on the code lines in question, you can insert \hspace that begins
at the beginning of the code line (here with an example convenience command
defined using xparse):

1 x = 42 (first comment)
2 y = sin x (second comment)

\NewDocumentCommand \C { +u{/* } +u{ */} } {%
\rlap{#1}\hspace{3cm}\ct{#2}\\%

}
\begin{pseudo}
\C $x = 42$ /* first comment */
\C $y = \sin x$ /* second comment */
\end{pseudo}

See also the discussion of the \ct command for ideas on typesetting comments.
If you wish to align things across different indentation levels, you’ll have to add
or subtract multiples of \pseudoindentlength (see \pseudoindent).

Another option for aligning comments or the like is to use a custom \tabular
or \tabular-like environment, where the aligned material is placed in a column
of its own. This is the technique used in Algorithm 3.1, for example. For more
on this approach, see Sect. 5.4.

If you want alignment or tabbing outside the pseudo environment, for ex-
ample, to align the input and output descriptions inside a tcolorbox (cf. Chap-
ter 3), an excellent alternative is the tabto package. You could also use other
constructs, such as a tabular, tabbing or description. An advantage of the
tabto solution is that you retain the paragraph spacing set up by the tcolorbox
styles defined by pseudo.

You can simply define the tab stops globally, using \TabPositions in your
preamble, or you can do it as part of the box setup, e.g.,. using pseudo/init
when defining your tcolorbox environment with \newtcbtheorem (or, as in the
following simplified example, just supply it directly as an option to the box
environment).

If you’d rather not separate the elements of, say, your input description by
paragraphs, you could of course use line breaks (\\); however, \tab won’t work

∗ Note that \rlap doesn’t start a new paragraph, which is why I use \noindent, here. You
could replace \noindent\rlap{...} with \makebox[0pt][l]{...}. This isn’t an issue in
pseudo code lines, however.

https://ctan.org/pkg/xparse
https://ctan.org/pkg/tabto
https://ctan.org/pkg/tabto
https://ctan.org/pkg/tcolorbox
https://ctan.org/pkg/pseudo
https://ctan.org/pkg/tcolorbox

64 But how do I . . .

on its own at the beginning of the next line. To fix this, simply add \null
before it (i.e., use \null\tab).

Data A graph G = (V, E) with weight function w : E ! R
A start node s ∈ V

Require No negative cycle in G is reachable from s

Result An array d of distances from s

1 . . .

% In document preamble:
% \usepackage{tabto}
\begin{tcolorbox}[pseudo/filled,

pseudo/init = {\TabPositions{1.5cm}}]

\textbf{Data}
\tab A graph $G=(V,E)$ with weight function $w:E\to\mathbf{R}$

\tab A start node $s\in V$

\textbf{Require}
\tab No negative cycle in G is reachable from s

\textbf{Result}
\tab An array d of distances from s

\begin{pseudo}
\dots
\end{pseudo}
\end{tcolorbox}

5.6 . . . use horizontal lines?
Many opt for a table-like appearance when typesetting algorithms, with hori-
zontal lines above and below, and generally a header row on top. While this
may be part of a surrounding floating environment (see Chapter 3), you may
also wish to include such lines in your actual pseudocode. In this case, you
can simply use existing tabular-based tools such as booktabs, making sure to
suppress the pseudo prefix using the star flag (*):

Bor̊uvka(G, w)
1 while E(G) is not empty
2 for each u ∈ V (G)
3 add light uv ∈ E(G) to T
4 for each e ∈ T
5 contract e

https://ctan.org/pkg/booktabs
https://ctan.org/pkg/pseudo

5.7 . . . handle object attributes? 65

% In document preamble:
% \usepackage{booktabs}
\begin{pseudo}*
\toprule

\hd{Bor\r{u}vka}(G, w) \\
%

[bol=\midrule]

\kw{while} $E(G)$ is not empty \\+
\kw{for} each $u\in V(G)$ \\+

add light $uv \in E(G)$ to T \\-
\kw{for} each $e \in T$ \\+

contract e *

\bottomrule
\end{pseudo}

Rather than \\[bol=\midrule], you could also have used *, followed by
\midrule\pseudoprefix. (Note that the paragraph break between \\ and its
argument has been commented out.)

5.7 . . . handle object attributes?
In the clrscode3e package, you’ll find an assortment of commands for handling
object attributes such as A.length. The manual says (here with emulated kerning
of the dot operator):

You might think you could typeset A.length by $A.\id{length}$,
but that would produce A.length, which has not quite enough space
after the dot. (page 3)

However, this is a font issue, more than anything. If, for example, if you want
Times New Roman (like Cormen et al.) and use mathptm, you at times run
into the problem described; with newtx it’s less pronounced. With other fonts
(e.g., fourier, mathpple or newtxmath with libertine), or even without any font
packages (or possibly using lmodern), the kerning works just fine.

In general, then, I suggest you try to use $A.\id{length}$ and the like,
and see if the result is satisfactory:
v.prev.next = v.next

$v.\id{prev}.\id{next} = v.\id{next}$

If you do need to adjust the kerning (with \mkern commands or perhaps using
microtype), you may of course do so, but pseudo does not (at present) include
any special attribute lookup commands that do it for you.

https://ctan.org/pkg/clrscode3e
https://ctan.org/pkg/mathptm
https://ctan.org/pkg/newtx
https://ctan.org/pkg/fourier
https://ctan.org/pkg/mathpple
https://ctan.org/pkg/newtxmath
https://ctan.org/pkg/libertine
https://ctan.org/pkg/lmodern
https://ctan.org/pkg/microtype
https://ctan.org/pkg/pseudo

66 But how do I . . .

5.8 . . . indicate blocks with braces or the like?

Some packages (such as algorithm2e) have support for using vertical lines to
indicate the block structure; pseudocode uses large braces. In pseudo, there is
support for using an indent-mark, for which the default is a semithick, gray
vertical line (see page 10). However, by using tikz, you could draw all kinds of
indentation decorations.

You could, for example, add a node at the start of each code line, containing
an \@arstrut, the (array) strut used to indicate the extent of a tabular row:

% \usepackage{xparse,tikz}
% \usetikzlibrary{decorations.pathreplacing,calligraphy}
\makeatletter
\NewDocumentCommand \pseudoanchor { m } {%

\tikz[baseline, overlay, remember picture]
\node[anchor=base, inner sep=0] (#1) {\@arstrut};%

\ignorespaces
}
\makeatother

You can then use the resulting nodes to draw braces or lines or whatever. First
some example setup:

\pseudoset{
kw,
indent-length = 3.5em,
setup-append = {\pseudoanchor{L-\arabic*}}

}
\tikzset{

braces/.style =
{thick, decoration = {calligraphic brace, raise=.2em}},
label/.style =
{midway, left=3em, anchor=west, font=\strut\kwfont}

}

You would then get something like the following:

1 if x < y
2 x = y
3 y = 0then

https://ctan.org/pkg/algorithm2e
https://ctan.org/tex-archive/macros/latex/contrib/pseudocode
https://ctan.org/pkg/pseudo
https://ctan.org/pkg/pgf
https://ctan.org/pkg/array

5.9 . . . use pseudo with older TEX distributions? 67

\begin{pseudo}
if $x < y$ \\+

$x = y$ \\
$y = 0$

\end{pseudo}
\tikz[overlay, remember picture, braces] {

\draw[decorate] (L-3.south) -- (L-2.north) node[label] {then};
}

If multiple blocks are closed at the same time, the bottom coordinates could be
things like (L-2.north |- L-3.south) instead. To adjust the end points, you
could also use things like ($(L-3.south)+(0,.2em)$).

The actual drawing of the brace (or line or whatever) isn’t automated here,
of course. This could be done by some hook triggered by the - flags in \\. If it
turns out there’s a demand for something like that, I might add it in a future
version.

5.9 . . . use pseudo with older TEX distributions?
As mentioned in the introduction, I’ve tried to make pseudo work with at least
somewhat outdated TEX distributions. In these cases, the package itself won’t
be available as part of the distribution, of course, but you can simply download
the file pseudo.sty and place it in the directory where you’re compiling your
document (or anywhere else where your LATEX executable can find it).

However, there may be cases where this just doesn’t work, such as when
submitting to a publisher with a really old setup.∗ In that case, the simplest
solution is probably to use the standalone package to produce individual PDFs
of your algorithms, and then to include those in your document. Then you can
submit the PDFs rather than the LATEX, so that the pseudocode need not be
compiled on the old system. Each algorithm could go in a file like this:

\documentclass{standalone}
\usepackage{pseudo}
\begin{document}
\begin{pseudo}

...
\end{pseudo}
\end{document}

Let’s say this is compiled to algo1.pdf. You then include this file:

∗ If possible, though, feel free to file an issue or provide a pull request to address the issue.

https://ctan.org/pkg/pseudo
https://ctan.org/pkg/pseudo
https://ctan.org/pkg/pseudo
http://mirrors.ctan.org/macros/latex/contrib/pseudo/pseudo.sty
https://ctan.org/pkg/standalone
https://github.com/mlhetland/pseudo.sty/issues
https://github.com/mlhetland/pseudo.sty/pulls

68 But how do I . . .

\documentclass{article}
\usepackage{graphicx} % For \includegraphics
...
\begin{document}
... sanctus est Lorem ipsum dolor sit amet:

\medskip\noindent
\includegraphics{algo1.pdf}

\smallskip
Lorem ipsum dolor sit amet, consetetur sadipscing ...
\end{document}

Of course, you can adjust the spacing (e.g., using \vspace or the like) to your
liking. Using this method, you can can achieve results essentially identical to if
you compiled the pseudocode directly as part of the document. Of course, you
won’t have access to other functionality (such as \DeclarePseudoIdentifier
or the like) for use in the main tex, but most of that should be possible to
emulate by hand (possibly peeking at the implementation in Chapter 6).

5.10 . . . use a header with no arguments?
Normally, \hd has a mandatory set of arguments; at the very least, you’ll need
to supply the parentheses:

No-Arguments()
1 . . . but still with parentheses

\begin{pseudo}*
\hd{No-Arguments}() \\
\dots\ but still with parentheses
\end{pseudo}

This is because \hd has to be fully expandable to be able to insert the requisite
\multicolumn, and then it cannot have any (final) optional arguments. If you’d
like, though, you can just use \multicolumn yourself (see also hd-preamble):

No-Arguments
1 . . . and no parentheses!

\begin{pseudo}*
\multicolumn{2}{\pseudohdpreamble}
{\pr{No-Arguments}} \\
\dots\ and no parentheses!
\end{pseudo}

5.11 . . . place algorithm boxes side by side? 69

5.11 . . . place algorithm boxes side by side?

In the simplest case, maybe you just want to place two of them side by side in
the text (i.e., not as floats). Let’s say you’ve defined an environment as follows:

\newtcbtheorem{procedure}{Procedure}{pseudo/filled}{}

Two of these cannot directly be placed side by side, because each will insert
paragraph breaks and spacing before and after itself. However, this code can
be disabled by using the tcolorbox keys before and after (along with width,
to make sure there’s room. If we also want the boxes to have the same height,
we can use the key equal height group (with some arbitrary name):

Procedure 1

1 Foo
2 Bar
3 Baz

Procedure 2

1 Frozz
2 Bozz

\begin{procedure}[after={}, width=.49\linewidth,
equal height group=A]{}{}

\begin{pseudo}
Foo \\ Bar \\ Baz
\end{pseudo}
\end{procedure}
\hfill
\begin{procedure}[before={}, width=.49\linewidth,

equal height group=A]{}{}
\begin{pseudo}
Frozz \\ Bozz
\end{pseudo}
\end{procedure}

If the boxes are floats (i.e., either defined or used with the tcolorbox key float,
you can still use the equal height group key. This is useful, for example, in a
twocolumn layout, if the boxes are at the top (or bottom), one in each column.

Finally, if your boxes are floats in general, you’re using a single-column
layout, and you want two boxes to float together, side by side (e.g., because the
pseudocode itself takes up little horizontal space), you can use the first technique
(setting width, before and after) along with the tcolorbox key nofloat, and
then place the boxes inside some other float (such as a normal LATEX figure,
or a custom one using the float package):

https://ctan.org/pkg/tcolorbox
https://ctan.org/pkg/tcolorbox
https://ctan.org/pkg/tcolorbox
https://ctan.org/tex-archive/macros/latex/contrib/float

70 But how do I . . .

\begin{figure}
\begin{procedure}[nofloat, after={}, width=.49\linewidth,

equal height group=A]{}{}
\begin{pseudo}

% ...
\end{pseudo}
\end{procedure}
\hfill
\begin{procedure}[nofloat, after={}, width=.49\linewidth,

equal height group=A]{}{}
\begin{pseudo}

% ...
\end{pseudo}
\end{procedure}
\end{figure}

5.12 . . . have steps span multiple lines?
First of all, you can do this by just breaking your lines manually, keeping any
additional lines belonging to the same step unnumbered, by using the starred
version of \\ and skipping the number column with &, adding unnumbered lines:

1 This step is broken . . .
. . . into multiple lines

2 This one is not

\begin{pseudo}[line-height=1.1]
This step is broken\,\dots *&
\dots\,into multiple lines \\
This one is not

\end{pseudo}

If you want the line breaking to be automated, and you don’t need indentation,
you can use a p column, specified in preamble (perhaps defining a style using
\pseudodefinestyle), adapted from the default, as in the following.

The default is found on p. 89. However, in the source code there, whitespace
is insignificant. In writing your own preamble, you should avoid spurious
whitespace inside >{...} and <{...}.

1 Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy
eirmod tempor invidunt ut labore et dolore magna aliquyam erat.

2 At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd
gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet.

5.13 . . . get the old spacing? 71

\begin{pseudo}[preamble = {
>{\pseudohpad} \pseudolabelalign
>{\pseudosetup} p{11.7cm} <{\pseudohpad}

},
setup-append = \raggedright\RestorePseudoBackslash,
line-height = 1.5]

Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam
nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam
erat. \\
At vero eos et accusam et justo duo dolores et ea rebum. Stet
clita kasd gubergren, no sea takimata sanctus est Lorem ipsum
dolor sit amet.
\end{pseudo}

In addition to introducing the p column, I’ve added \raggedright to the setup
(using setup-append, with \RestorePseudoBackslash to restore \\, because
\raggedright redefines it).

One disadvantage of the p column is that you need to know its exact width.
A better solution is probably to replace the default tabular with a tabularx,
as discussed in Sect. 5.4, and use an X column, i.e.:∗

begin-tabular = \tabularx{\linewidth}[t]{
>{\pseudohpad} \pseudolabelalign
>{\pseudosetup} X <{\pseudohpad}

},
end-tabular = \endtabularx,
setup-append = \RestorePseudoEq,

The main problem with this setup is that the automatic line wrapping doesn’t
take indentation into account, i.e., only the first line is indented! While there are
ways of dealing with this,† the simplest solution (at least for now) is probably
to break lines manually, using *&.

5.13 . . . get the old spacing?
The current version of the pseudo environment ensures the spacing above and
below is adjusted, so the baselines of the previous and following lines are po-
sitioned equally, regardless of their depths or heights. If you’d rather have the
old behavior (which, frankly, was really a bug), you can get that as follows:

\pseudoset{pos = {}, prevdepth = 0pt}

∗ For an explanation of the use of [t], see the documentation of the pos option.
† Cf. https://github.com/mlhetland/pseudo.sty/issues/16.

https://github.com/mlhetland/pseudo.sty/issues/16

72 But how do I . . .

5.14 . . . configure my tcolorboxes?

If you use the pseudo styles for tcolorboxes (see Chapter 3), you might still wish
to do some tweaking, or even redefine most of the styling. This is done using
the tcolorbox configuration system, not that of pseudo, so it’s worth consulting
the tcolorbox documentation (and, perhaps, the source of the pseudo box styles,
in Sect. 6.9). In the following, I go through some examples of things you might
want to adjust. First, let’s define a rather unstyled environment which we can
modify locally.

\newtcbtheorem{example}{Example}{}{}

If you want the styling to apply to the environment in general, simply
insert it as the third argument. See the tcolorbox documentation for more
about \newtcbtheorem.

A different separator. By default, the pseudo box styles use an \enskip to
separate the label part from the description, but you might want to use some-
thing else, such as a colon or a period. You can get this by using the separator
sign key:

Example 1: . . .

. . .

\begin{example}[pseudo/ruled, separator sign = :]{\dots}{}
\dots

\end{example}

A different parskip. You might want more or less spacing between the para-
graphs of any plain text outside your pseudocode. You do this by setting
\parskip, which is normally set as part of the before upper key in the pseudo/
styles (see p. 101). Rather than overwrite the before upper code, you can use
the hook pseudo/init (set as part of the tcolorbox configuration, not using
\pseudoset):

Example 2 . . .
The parskip

is bigger!

https://ctan.org/pkg/pseudo
https://ctan.org/pkg/tcolorbox
https://ctan.org/pkg/pseudo
https://ctan.org/pkg/tcolorbox
https://ctan.org/pkg/pseudo
https://ctan.org/pkg/tcolorbox
https://ctan.org/pkg/pseudo
https://ctan.org/pkg/tcolorbox

5.14 . . . configure my tcolorboxes? 73

\begin{example}[pseudo/boxed,
pseudo/init = \parskip\baselineskip]{\dots}{}
The parskip

is bigger!
\end{example}

It is possible to use the tcolorbox key before upper app (together with the
tcolorbox library hooks) instead of pseudo/init. However, the compatibil-
ity code (Sect. 6.11) appends some spacing to this setup hook, and this may
be messed up by inserting more code after it. In this case, pseudo/init is
safer.

You could set \topsep and \partopsep in the same manner, but unless
you want to change the settings for lists (such as itemize and enumerate),
you could also just set those for pseudocode specifically, using the pseudo keys
topsep and partopsep, perhaps as part of the in-float style.

Different line widths. If you start with pseudo/boxruled, this is easy enough—
you can just use the standard tcolorbox keys to adjust the line widths.

Example 3 . . .

Now that’s a box!

\begin{example}[pseudo/boxruled,
boxrule = 4pt, titlerule = 2pt]{\dots}{}
Now \emph{that’s} a \emph{box}!

\end{example}

The problem with the other ruled or boxed styles is that they use the empty
skin, which removes the box drawing.

The reason they don’t just set the appropriate line widths to zero is that
this generally still results in visible hairlines in many PDF viewers.

They then instead rely on various borderline commands. These are cumula-
tive, so if you want to replace some of them, you first need to clear the deck
with no borderline, and then re-do them all. For example, maybe you want a
version of pseudo/tworuled with light rules:

Example 4 . . .
. . .

https://ctan.org/pkg/tcolorbox
https://ctan.org/pkg/tcolorbox
https://ctan.org/pkg/pseudo
https://ctan.org/pkg/tcolorbox

74 But how do I . . .

\begin{example}[pseudo/tworuled,
no borderline,
toprule = \lightrulewidth,
bottomrule = \lightrulewidth,
borderline horizontal =
{\lightrulewidth}{0pt}{black}]{\dots}{}

\dots
\end{example}

Note that even though the box rules aren’t drawn, they can still be used for
spacing—which the borderlines don’t handle. In pseudo/tworuled, toprule
and bottomrule are set to \heavyrulewidth, so since we’re replacing the hor-
izontal borderlines with lighter ones, we need adjust these as well. (If you do
something similar with pseudo/ruled, the width of the title rule can still be
changed by using the titlerule key, as in the previous example.)

Different colors. Again, customizing pseudo/boxruled is easy enough; you
can set the line colors using the colframe, and the fill colors using colback and
colbacktitle. The latter two keys also work well with the pseudo/filled style
(as shown in the example on page 22). To modify the line colors in the other
styles, you’ll need borderline commands, again (though with separate styling
for the title rule). For example:

Example 5 . . .

. . .

\begin{example}[pseudo/booktabs,
no borderline,
titlerule style = lightgray,
borderline horizontal = {\heavyrulewidth}{0pt}{gray}]{\dots}{}

\dots
\end{example}

If you want to style the top and bottom line separately, just use borderline
north and borderline south separately, rather than the collective borderline
horizontal.

Chapter 6

Implementation

Note: In the following, _@@ and @@ represent an internal prefix (__pseudo), the
same way they do with l3docstrip.

First, we just define some metadata:

\def \pseudoversion {1.2.3}
\def \pseudodate {2023/03/21}

The pseudo package is implemented using experimental LATEX 3, so we start by
importing expl3:

\RequirePackage{expl3}

Then we’re ready start the package:

\ProvidesExplPackage
{pseudo}
{\pseudodate}
{\pseudoversion}
{Straightforward pseudocode}

Tools for defining user commands:

\RequirePackage{xparse}

For defining tcolorbox styles, without importing tcolorbox:

\RequirePackage{pgfkeys}

The pseudo environment is built upon tabular functionality, and we’re using
some extensions:

\RequirePackage{array, xcolor, colortbl}

Though most keys aren’t available as \usepackage arguments, we still use the
mechanism:

75

https://ctan.org/pkg/l3docstrip
https://ctan.org/pkg/pseudo
https://ctan.org/pkg/expl3
https://ctan.org/pkg/tcolorbox
https://ctan.org/pkg/tcolorbox

76 Implementation

\RequirePackage{l3keys2e}

Inside the pseudo environment, * is an alias for pseudoline. To perform the
proper aliasing, we use aliascnt:

\RequirePackage{aliascnt}

As part of the initial setup, we also record whether we’re part of a beamer
presentation; this will affect the overlay functionality:

\bool_new:N \c_@@_beamer_bool
\@ifclassloaded{beamer}

{\bool_set_true:N \c_@@_beamer_bool}
{\bool_set_false:N \c_@@_beamer_bool}

We’re now ready to begin the actual implementation.

6.1 Variable declarations
Many variables are created as needed by various set commands, but some are
declared initially. First, we create a plain-vanilla LATEX counter for the line
number, as well as an outer one for the environment, the latter just to avoid
duplicate labels:

\newcounter{pseudoenv}
\newcounter{pseudoline}[pseudoenv]

Eventually, we’ll be saving the line counter so that \label commands will work,
but we’ll only do so if the counter has changed (again, to avoid duplicate labels).
To determine whether, in fact, it has, we keep the previous one we saved:

\int_new:N \g_@@_last_saved_line_int

Normally a counter is just saved when it’s incremented (with \refstepcounter),
but in our case, we want to increment and typeset it based on a (potentially)
user-configured label, and then actually save it and make it the target of
\label commands in a different scope (i.e., the next cell in the tabular row).

The indent size is set through the configuration key indent-length (or in-
directly through indent-text), while the current indent level is manipulated
by \\; their product determines the actual length by which the current line is
indented. The initial indent level may be set using indent-level.

\dim_new:N \pseudoindentlength
\int_new:N \g_@@_indent_level_int
\int_new:N \l_@@_initial_indent_level_int

When handling unknown keys, we have special-casing of \\, so we need to
know if that’s the command we’re in:

https://ctan.org/pkg/aliascnt
https://ctan.org/pkg/beamer

6.2 Utilities 77

\bool_new:N \l_@@_in_eol_bool

6.2 Utilities
Variants. First, let’s just generate a couple of expansion variants we’ll need of
some standard commands. (I’m using the \q_no_value machinery rather than
\c_novalue_tl for compatibility with older TEX distributions.)

\cs_generate_variant:Nn \quark_if_no_value:nTF { VTF }
\cs_generate_variant:Nn \tl_if_novalue:nTF { VTF }
\cs_generate_variant:Nn \tl_set:Nn { Ne }
\exp_args_generate:n { NNVNNV }

Defining columns. The preamble is is configurable, but the array package
makes sure it doesn’t expand any part of its preamble. One way of inserting a
dynamically generated one is to simply define it all as a single column type. To
avoid getting an error when overwriting this definition through the configura-
tion, we’ll also need to be able to un-define column types:

\cs_new:Npn \@@_undef_col:n #1 {
\tl_set_eq:cN { NC@find@ \token_to_str:N #1 } \scan_stop:

}

Note that the implementation specifically targets the array package. The fol-
lowing command then will either define or re-define a column type:

\cs_new:Npn \@@_def_col:nn #1 #2 {
\@@_undef_col:n { #1 }
\newcolumntype { #1 } { #2 }

}

Defining commands. This command creates a new command with a pseudo
prefix, and defines the prefixless version as well, if the name is available (i.e.,
undefined):

\cs_new:Npn \@@_meta_new_cmd:NNnn #1 #2 #3 #4 {
\tl_set:Nn \l_tmpa_tl {pseudo \cs_to_str:N #2}
\exp_args:Nc

#1 \l_tmpa_tl #3 {#4}
\cs_if_free:NT #2 {\cs_gset_eq:Nc #2 \l_tmpa_tl}

}

\cs_new:Npn \@@_new_cmd:Nnn #1 #2 #3 {
\@@_meta_new_cmd:NNnn
\NewDocumentCommand #1 {{#2}} {

#3
}

}

\cs_new:Npn \@@_new_ecmd:Nnn #1 #2 #3 {

https://ctan.org/pkg/array
https://ctan.org/pkg/array

78 Implementation

\@@_meta_new_cmd:NNnn
% \NewExpandableDocumentCommand #1 {{#2}} {
% Replaced for compatibility:
\def #1 {#2} {

#3
}

}

This is for defining commands that declare styled shortcuts:

\cs_new:Npn \@@_new_dec:nn #1 #2 {
\tl_set:Nn \l_tmpa_tl { DeclarePseudo #1 }
\exp_args:Nc
\DeclareDocumentCommand \l_tmpa_tl { mm } {

\DeclareDocumentCommand ##1 { } {
\use:c { #2 } { ##2 }

}
}

}

You use this with a capitalized name for the kind of thing you’re declaring, and
the name of the style command to use. For example,

\@@_new_dec:nn{Keyword}{kw}

will create the command \DeclarePseudoKeyword, which takes a csname and
a word, and binds the csname as a shortcut for the word, properly styled as a
keyword.

Argument parsing. In processing the multiple + and - arguments to \\, we’ll
gobble up one character at a time, each time performing some action. We also
supply code to be performed once we’re done.

\cs_new:Npn \@@_per_char:nnn #1 #2 #3 {
\peek_charcode_remove:NTF { #1 } {

#2 % body
\@@_per_char:nnn{#1}{#2}{#3}

} {
#3 % tail

}
}

Indentation. The indent size (i.e., the length of a single step of indentation) is
either set directly through indent-length, or indirectly through indent-text.
The latter is there the default is provided, but indent-text is only used if there
is no indent-length.

\cs_new:Npn \@@_set_indent_length: {

\quark_if_no_value:VTF \l_@@_indent_length_tl {
\hbox_set:Nn \l_tmpa_box { \l_@@_indent_text_tl }
\dim_set:Nn \pseudoindentlength { \box_wd:N \l_tmpa_box }

} {

6.2 Utilities 79

\dim_set:Nn \pseudoindentlength \l_@@_indent_length_tl
}

}

Note that the configured indent length is stored in a tl, which is expanded in
the pseudo environment.

The indent size is subsequently used by the indent command, which takes
the number of indentation steps as its only argument. If no indent-mark is
set, it just inserts an appropriate horizontal space. Otherwise, it iterates over
the indent levels, inserting one indent marker for each level. Note that to avoid
affecting the indent, the indent-mark should have no width (i.e., it should
“undo” the width of any text it contains, using \rlap, a negative \hspace or
the like).

\cs_new:Npn \@@_indent:N #1 {
\tl_if_novalue:VTF \l_@@_indent_mark_tl {

\skip_horizontal:n{ \pseudoindentlength * #1 }
} {

\group_begin:
\color{\l_@@_indent_color_tl}
\int_step_inline:nn { \g_@@_indent_level_int } {

\l_@@_indent_mark_tl
\skip_horizontal:n{ \pseudoindentlength }

}
\group_end:

}
\ignorespaces

}

Counter copying. Inside the pseudo environment, we want * to be a duplicate
of pseudoline, for convenience. This requires a bit of work. We use the aliascnt
package to deal with much of the book-keeping, but in order for \newaliascnt
to work whenever a counter already exists, we need to undefine it first. (Here
we’re relying on the internal LATEX convention of using c@ as a prefix to counter
names.)

\cs_new:Npn \@@_drop_ctr:n #1 {
\cs_undefine:c { c@ #1 }

}

\cs_new:Npn \@@_copy_ctr:nn #1 #2 {
\@@_drop_ctr:n { #1 }
\newaliascnt { #1 } { #2 }

}

\cs_new:Npn \@@_star_setup: {

\cs_if_exist:cT { c@ * } {
\@@_copy_ctr:nn { @@_orig_* } { * }

}
\@@_copy_ctr:nn { * } { pseudoline }

https://ctan.org/pkg/aliascnt

80 Implementation

\group_insert_after:N \@@_star_reset:

}

\cs_new:Npn \@@_star_reset: {
\cs_if_exist:cT { c@ @@_orig_* } {

\@@_copy_ctr:nn { * } { @@_orig_* }
\cs_undefine:c { c@ @@_orig_* }

}
}

Label saving. In the body of each line, we make sure to save the counter, so
it’s available for the \label command. We’ve aready incremented pseudoline
with \stepcounter in the label, so we first need to decrement it before we
again increment it, this time with \refstepcounter. However, we only do so if
the counter actually was incremented, i.e., if it’s different from the last one we
saved.

\cs_new:Npn \@@_save_label: {

\int_set:Nn \l_tmpa_int {\arabic{pseudoline}}

\int_compare:nF {\l_tmpa_int = \g_@@_last_saved_line_int} {
\addtocounter{pseudoline}{-1}
\refstepcounter{pseudoline}
\int_gset_eq:NN \g_@@_last_saved_line_int \l_tmpa_int

}

}

\DeclareDocumentCommand \pseudosavelabel { } {
\@@_save_label:

}

Saving and restoring. In general, we could just use local variables and trust
the scope mechanism, but if we use global assignments inside the scope (e.g.,
because of where in a tabular we must assign things and use them), the original
meaning won’t be restored. Of course, this should not be used if assignments
are local, as it will globally set the original name to the meaning it had when
we entered the scope.

In saving a macro, we also supply a name for the original, which may then
be used to refer to it until it’s restored.

\cs_new:Npn \@@_cs_gsave_as:NN #1 #2 {
\cs_gset_eq:NN #2 #1
\group_insert_after:N \cs_gset_eq:NN
\group_insert_after:N #1
\group_insert_after:N #2

}

Skipping paragraphs. Ignoring space is easy enough, but skipping \par tokens
takes a bit more work. We’ll be using this as part of the end-of-line handling,

6.3 Styles 81

when we’re checking if the next “real” token is \end. The argument is the code
to execute after skipping (and removing) whitespace and \par tokens.

\cs_new:Npn \@@_skip_pars:n #1 {
\peek_meaning_remove_ignore_spaces:NTF \par {

\@@_skip_pars:n { #1 }
} {

#1
}

}

6.3 Styles
The first text styling commands are only straight-up shortcuts for normal font
commands:

\@@_new_cmd:Nnn \nf { } { \normalfont }
\@@_new_cmd:Nnn \tn { m } { \textnormal { #1 } }
\@@_new_cmd:Nnn \kw { m } { \textnormal {\kwfont { #1 } } }
\@@_new_cmd:Nnn \cn { m } { \textnormal {\cnfont { #1 } } }
\@@_new_cmd:Nnn \id { m } { \textnormal {\idfont { #1 } } }

As a side-effect, we’ve now also defined \pseudonf and \pseudotn,
which we don’t really need, as we might as well use \normalfont and
\textnormal directly.

While we’re at it, we’ll define the initial value for \kwfont, which is generally
non-extended bold, if that’s available, but extended bold otherwise:

\cs_new:Npn \@@_b_or_bx: {

% Note: We’re relying on the warning text in \@defaultsubs
% being defined by \selectfont if the desired font isn’t
% found. This won’t happen, however, if the same
% \curr@fontshape combination has been attempted before
% (cf. source2e.pdf page 179).

\group_begin:

\cs_if_exist:NT \@defaultsubs {
\@@_cs_gsave_as:NN \@defaultsubs \@@_defaultsubs
\cs_gset_eq:NN \@defaultsubs \relax

}

% This is what we’d like:
\cs_gset:Nn \@@_b_or_bx: { \fontseries{b}\selectfont }

% Try it:
\@@_b_or_bx:

82 Implementation

% Fallback, if that failed:
\cs_if_exist:NT \@defaultsubs {

\cs_gset_eq:NN \@@_b_or_bx: \bfseries
}

\group_end:

% Make sure the new version is used:
\@@_b_or_bx:

}

Note that the command redefines itself after the first use, so as not to execute
the check every time.

The \pr command is also a font shortcut, but in addition takes optional
parenthesis-delimited arguments, which are set in math mode. To avoid erro-
neousy slurping up following parentheticals, there should be no space separating
the command and its optional argument. With current versions of xparse, this
can be achieved with the ! argument type, but for compatibility with older TEX
distributions, I’ll deal with it “manually.”

\cs_new:Npn \@@_fmt_pr:n #1 {
\textnormal{\prfont{ #1 }}

}

\NewDocumentCommand \@@_parse_paren_args { +d() } {
\IfNoValueF { #1 } {

\ensuremath{ (#1) }
}

}

\NewDocumentCommand \@@_parse_bracket_or_paren_args { +o } {
\IfNoValueTF { #1 } {

\@@_parse_paren_args
} {

\ensuremath{ [#1] }
}

}

\@@_new_cmd:Nnn \pr { m } {
\@@_fmt_pr:n { #1 }
\peek_catcode:NTF { ˜ } { } {

\@@_parse_paren_args
}

}

The \fn command is similar, but alternatively permits arguments in square
brackets.

\cs_new:Npn \@@_fmt_fn:n #1 {
\textnormal{\fnfont{ #1 }}

}
\@@_new_cmd:Nnn \fn { m } {

https://ctan.org/pkg/xparse

6.3 Styles 83

\@@_fmt_fn:n { #1 }
\peek_catcode:NTF { ˜ } { } {

\@@_parse_bracket_or_paren_args
}

}

The \hd command is similar to \pr command, except that it spans two columns
(effectively ignoring the labeling column). Because it needs to be expandable
in order to insert the multicolumn, the final, parenthesis-enclosed argument can
not be optional (unlike for \pr). Note also that \hd sets extra-space (or the
underlying tl) based on hd-space.

% \@@_new_ecmd:Nnn \hd { m +r() } {
% Now uses \def syntax:
\@@_new_ecmd:Nnn \hd { #1 (#2) } {

\multicolumn{2}
{\pseudohdpreamble}
{\@@_fmt_pr:n{#1}\ensuremath{(#2)}}
\tl_set_eq:NN \l_@@_extra_space_tl \l_@@_hd_space_tl

}

Finally, \st and \ct add quotes and comment delimiters, respectively, to the
typeset string, keeping it all in \textnormal:

\@@_new_cmd:Nnn \st { +m } {
\textnormal {
\l_@@_st_left_tl {\stfont{#1}} \l_@@_st_right_tl }

}
\@@_new_cmd:Nnn \ct { +m } {

\textnormal {
\l_@@_ct_left_tl {\ctfont{#1}} \l_@@_ct_right_tl }

}

Beyond text styling, we also have styling for entire rows, i.e., highlighting:

% \NewExpandableDocumentCommand \pseudohl { } {
% For backward compatibility:
\def \pseudohl {

\rowcolor{\pseudohlcolor}
}

Declarations. To declare shortcuts using the various styles, commands à la
DeclareMathOperator and DeclareDocumentCommand are provided:

\@@_new_dec:nn { Comment } { ct }
\@@_new_dec:nn { Constant } { cn }
\@@_new_dec:nn { Function } { fn }
\@@_new_dec:nn { Identifier } { id }
\@@_new_dec:nn { Keyword } { kw }
\@@_new_dec:nn { Normal } { tn }
\@@_new_dec:nn { Procedure } { pr }
\@@_new_dec:nn { String } { st }

84 Implementation

6.4 Notation
Here we’ll define a couple of symbols that are useful for pseudocode but that
are not necessarily entirely standard mathematical notation. First, the double
equals sign, ubiquitous in modern programming languages, and useful if = is
used for assignment. The horizontal scaling of the equals signs, as well as the
space between them and the padding on both sides may be adjusted by using
the keys eqs-scale, eqs-sep and eqs-pad. Initially, these are set to emulate
the \eqeq symbol from stix when used with Computer Modern, Latin Modern
or the like (though the command works just fine with other fonts as well).

\NewDocumentCommand \eqs { } {
\group_begin:
\muskip_set:Nn \l_tmpa_muskip \l_@@_eqs_pad_tl
\muskip_set:Nn \l_tmpb_muskip \l_@@_eqs_sep_tl
\hbox_set:Nn \l_tmpa_box {\(=\)}
\box_scale:Nnn \l_tmpa_box {\l_@@_eqs_scale_fp}{1}
\mathrel{

\tex_mskip:D \l_tmpa_muskip
\box_use:N \l_tmpa_box
\tex_mskip:D \l_tmpb_muskip
% \box_use_drop:N \l_tmpa_box
% Replaced for compatibility
\box \l_tmpa_box
\tex_mskip:D \l_tmpa_muskip

}
\group_end:

}

For convenience and source-code clarity, the following shortcut (i.e., \==) is
defined (hijacking the \= accent command):

\cs_gset_eq:NN \c_@@_orig_eq_cs \=

\DeclareDocumentCommand \= { m } {
\tl_if_eq:nnTF { #1 } { = } {

\eqs
} {

\c_@@_orig_eq_cs{#1}
}

}

\cs_gset_eq:NN \@@_eq: \= % Stored for \RestorePseudoEq

Similarly, there’s the Pascal two-dot interval notation, whose implementation
mirrors Knuth’s \dts command from Concrete Mathematics (see gkpmac.tex),
with the addition of \nolinebreak, taken from clrscode4e.

\NewDocumentCommand \dts { } {
\nolinebreak
\mathinner {

\ldotp

https://ctan.org/pkg/stix
https://proofwiki.org/wiki/Definition:Real_Interval/Notation/Wirth
https://ctan.org/pkg/gkpmac.tex
https://www.cs.dartmouth.edu/~thc/

6.5 Options 85

\ldotp
}
\nolinebreak

}

There’s a shortcut (\..) defined for this as well (this time hijacking \.):

\cs_gset_eq:NN \c_@@_dot_cs \.

\DeclareDocumentCommand \. { m } {
\tl_if_eq:nnTF { #1 } { . } {

\dts
} {

\c_@@_dot_cs { #1 }
}

}

Finally, we define a different syntax for numeric ranges like these (or slices or
subarrays). This command is based on the \subarr command of clrscode4e.

\NewDocumentCommand \rng { } {
\nolinebreak
\mathinner { : }
\nolinebreak

}

6.5 Options
Much of the behavior of pseudo may be configured through various options, and
these are defined below. You provide these either through \pseudoset or (where
applicable) as optional arguments to \\ or the pseudo environment itself.

The \usepackage options (handled by l3keys2e) are subject to full expansion,
an so many options simply won’t work. In order to make the kw option as easily
available as possible, however, we permit it here, by way of a bool that triggers
the actual key later on:

\keys_define:nn { pseudo/package } {
kw .bool_gset:N = \g_@@_kw_bool,
kw .default:n = true

}
\ProcessKeysOptions{ pseudo/package }

We now define the actual keys used by \pseudoset. Note that hpad and hsep
do not use .dim_set:N. This is because the dim would then be interpreted at
the point where it’s set, and not where it’s used. If we use units like em and ex,
which depend on the font and font size, the spacing would not be updated if
we change these things between setting hpad and hsep and actually typesetting
the pseudocode.

https://www.cs.dartmouth.edu/~thc/
https://ctan.org/pkg/pseudo
https://ctan.org/pkg/l3keys2e

86 Implementation

\keys_define:nn { pseudo } {

init .tl_set:N = \l_@@_init_tl,
init-append .code:n = {

\tl_put_right:Nn \l_@@_init_tl {#1}
},
init-prepend .code:n = {

\tl_put_left:Nn \l_@@_init_tl {#1}
},

font .tl_set:N = \pseudofont,
font .initial:n = \normalfont,

hpad .meta:n = {
hpad-val = { #1 },
hl-warn = false,

},
hpad .default:n = 0.3em,

% For internal use:
hpad-val .tl_set:N = \l_@@_hpad_tl,
hpad-val .initial:n = 0.0em,

hsep .tl_set:N = \l_@@_hsep_tl,
hsep .initial:n = .75em,

left-margin .tl_set:N = \l_@@_left_margin_tl,
left-margin .initial:n = 0pt,

label .tl_set:N = \l_@@_label_tl,
label .initial:n = \arabic*,

label-align .code:n =
\@@_def_col:nn{ \pseudolabelalign }{#1},

label-align .initial:n = r,

ref .tl_set:N = \thepseudoline,
ref .default:n = \l_@@_label_tl,

indent-length .tl_set:N = \l_@@_indent_length_tl,
indent-length .initial:V = \q_no_value,

indent-text .tl_set:N = \l_@@_indent_text_tl,
indent-text .initial:n = { \pseudofont\kw{else}\ },

indent-mark .tl_set:N = \l_@@_indent_mark_tl,
indent-mark .initial:x = \c_novalue_tl,

The default indent-mark is a vertical rule with width set by indent-mark-width,
followed by a negative horizontal space of the same magnitude.

indent-mark .default:n =
\skip_horizontal:n { \l_@@_indent_mark_shift_tl }
\tex_vrule:D width \l_@@_indent_mark_wd_tl

6.5 Options 87

\skip_horizontal:n {
-\l_@@_indent_mark_wd_tl
-\l_@@_indent_mark_shift_tl

},

indent-mark-width .tl_set:N = \l_@@_indent_mark_wd_tl,
indent-mark-width .initial:n = \c_@@_semithick_dim,

indent-mark-shift .tl_set:N = \l_@@_indent_mark_shift_tl,
indent-mark-shift .initial:n = 0pt,
indent-mark-shift .default:n = .5em,

indent-mark-color .tl_set:N = \l_@@_indent_color_tl,
indent-mark-color .initial:n = lightgray,

indent-level .int_set:N =
\l_@@_initial_indent_level_int,

kwfont .tl_set:N = \kwfont,
kwfont .initial:n = \@@_b_or_bx:,

kw .meta:n = { font = \kwfont },
kw .value_forbidden:n = true,

hl-warn .bool_set:N = \l_@@_hl_warn_bool,
hl-warn .initial:n = true,
hl-warn .default:n = true,

% For internal use:
hl-warn-code .code:n = {

\bool_if:nT \l_@@_hl_warn_bool {
\msg_warning:nn { pseudo } { hl-without-hpad }

}
},

hl .meta:n = {
hl-warn-code,
bol-prepend = \pseudohl

},
hl .value_forbidden:n = true,

bol .tl_set:N = \l_@@_bol_tl,
bol-append .code:n = {

\tl_put_right:Nn \l_@@_bol_tl {#1}
},
bol-prepend .code:n = {

\tl_put_left:Nn \l_@@_bol_tl {#1}
},

eol .tl_set:N = \l_@@_eol_tl,
eol-append .code:n = {

\tl_put_right:Nn \l_@@_eol_tl {#1}
},
eol-prepend .code:n = {

88 Implementation

\tl_put_left:Nn \l_@@_eol_tl {#1}
},

% Defined differently in beamer -- see below
pause .meta:n = ,
pause .value_forbidden:n = true,

cnfont .tl_set:N = \cnfont,
cnfont .initial:n = \textsc,

idfont .tl_set:N = \idfont,
idfont .initial:n = \textit,

stfont .tl_set:N = \stfont,
stfont .initial:n = \textnormal,

st-left .tl_set:N = \l_@@_st_left_tl,
st-left .initial:n = ‘‘,

st-right .tl_set:N = \l_@@_st_right_tl,
st-right .initial:n = ’’,

prfont .tl_set:N = \prfont,
prfont .initial:n = \cnfont,

fnfont .tl_set:N = \fnfont,
fnfont .initial:n = \idfont,

ctfont .tl_set:N = \ctfont,
ctfont .initial:n = \textit,

ct-left .tl_set:N = \l_@@_ct_left_tl,
ct-left .initial:n = (,

ct-right .tl_set:N = \l_@@_ct_right_tl,
ct-right .initial:n =),

hl-color .tl_set:N = \pseudohlcolor,
hl-color .initial:n = black!12,

dim-color .tl_set:N = \pseudodimcolor,
dim-color .initial:n = \pseudohlcolor,

dim .meta:n = {
bol-append = \color{\pseudodimcolor},
setup-append = \color{\pseudodimcolor}

},

line-height .tl_set:N = \l_@@_line_height_tl,
line-height .initial:n = 1,

extra-space .tl_set:N = \l_@@_extra_space_tl,
extra-space .initial:n = 0pt,

6.5 Options 89

hd-space .tl_set:N = \l_@@_hd_space_tl,
hd-space .initial:n = 0pt,

The default value here emulates the spacing used in clrscode4e, though with a
different mechanism:∗

hd-space .default:n = 0.41386ex,

start .tl_set:N = \l_@@_start_tl,
start .initial:n = 1,

Line structure. The preamble for the internal tabular is defined as a single
column type, to make it easier to apply it despite the array protections against
expansion.

preamble .code:n =
\@@_def_col:nn{ \pseudopreamble }{#1},

The preamble is laid out as described in Chapter 4:

preamble .initial:n = {
>{ \pseudohpad }
\pseudolabelalign
>{ \pseudosetup }
l
<{ \pseudohpad }

},
setup .tl_set:N = \l_@@_setup_tl,
setup .initial:n = {

\pseudoindent \pseudofont \pseudosavelabel
},

setup-append .code:n = {
\tl_put_right:Nn \l_@@_setup_tl {#1}

},
setup-prepend .code:n = {

\tl_put_left:Nn \l_@@_setup_tl {#1}
},

The preamble used for multicolumns is treated similarly:

hd-preamble .code:n =
\@@_def_col:nn{ \pseudohdpreamble }{#1},

hd-preamble .initial:n = {
>{ \pseudohpad } l <{ \pseudohpad }

},

The prefix is inserted by the row separator command.

∗ They insert \rule[-1.25ex]{0pt}{0pt} as part of the header.

https://www.cs.dartmouth.edu/~thc/
https://ctan.org/pkg/array

90 Implementation

prefix .tl_set:N = \pseudoprefix,
prefix .initial:n = {

\pseudobol \stepcounter* \pseudolabel &
},

Tabular setup. The beginning and end of the tabular environment, as well as
some positioning and spacing.

pos .tl_set:N = \pseudopos,
pos .initial:n = t,

prevdepth .tl_set:N = \l_@@_prevdepth_tl,
prevdepth .initial:n = .3 \baselineskip,

begin-tabular .tl_set:N = \l_@@_begin_tabular_tl,
begin-tabular .initial:n =

\begin{tabular}[\pseudopos]{\pseudopreamble},

end-tabular .tl_set:N = \l_@@_end_tabular_tl,
end-tabular .initial:n = \end{tabular},

List-like spacing. Space above and below is handled similarly to in the built-in
LATEX lists, with the option of locally overriding \topsep and \partopsep, with
compact used to control the presence of this spacing (overriding the ordinary
automatic choice based on the current mode).

topsep .tl_set:N = \l_@@_topsep_tl,
topsep .initial:n = { \topsep },

partopsep .tl_set:N = \l_@@_partopsep_tl,
partopsep .initial:n = { \partopsep },

compact .meta:n = {
compact-val = { #1 },
compact-def = true,
compact-code = { #1 },

},
compact .default:n = true,

% For internal use:
compact-val .bool_set:N = \l_@@_compact_bool,
compact-def .bool_set:N = \l_@@_compact_def_bool,
compact-code .code:n = {

\bool_if:nT { \l_@@_compact_bool } {
\tl_clear:N \pseudopos

}
},

Details. Finally, some tweakable parameters.

eqs-scale .fp_set:N = \l_@@_eqs_scale_fp,
eqs-scale .initial:n = 0.6785,

6.5 Options 91

eqs-sep .tl_set:N = \l_@@_eqs_sep_tl,
eqs-sep .initial:n = 0.63mu,

eqs-pad .tl_set:N = \l_@@_eqs_pad_tl,
eqs-pad .initial:n = 0.28mu,

}

Now that we’ve defined the real kw key, we reexamine the placeholder handled
by l3keys2e:

\bool_if:NT \g_@@_kw_bool {
\keys_set:nn { pseudo } { kw }

}

Beamer overlays. We redefine the pause key if we’re using beamer:

\bool_if:NT \c_@@_beamer_bool {
\keys_define:nn { pseudo } {

pause .meta:n = { eol-append = \pause }
}

}

There’s also the mechanism for handling overlay specifications on keys. Here
we handle unknown keys by checking if they end with an overlay specification,
and if they do, and we’re in beamer, we extract it. Outside beamer, keys with
overlays are simply ignored.

Note that because unknown keys currently can’t have a default (which we
could, in this case, use for some kind of marker, indicating no value was sup-
plied), the only solution is to treat an empty value the same way as no value, in
this case. This means that foo<1> and foo<1>={} are equivalent, and both will
trigger the default of foo, even though the latter of the two really shouldn’t.∗

\cs_new:Npn \@@_keys_set_overlay:nnn #1 #2 #3 {
\bool_if:NT \c_@@_beamer_bool {

\tl_if_novalue:nF { #1 } {
\only<#1>{ \keys_set:nn { #2 } { #3 } }

}
}

}

\msg_new:nnn { pseudo } { unknown-key } {
Unknown˜key˜’#1’˜ignored.

}

\tl_new:N \l_@@_overlay_tl

\keys_define:nn { pseudo } {
unknown .code:n = {

\group_begin:

∗ See https://github.com/latex3/latex3/issues/67.

https://ctan.org/pkg/l3keys2e
https://ctan.org/pkg/beamer
https://ctan.org/pkg/beamer
https://ctan.org/pkg/beamer
https://github.com/latex3/latex3/issues/67

92 Implementation

\int_zero:N \l_tmpa_int
\int_zero:N \l_tmpb_int

\tl_clear:N \l_tmpa_tl
\tl_clear:N \l_tmpb_tl

\tl_map_inline:Nn \l_keys_key_tl {

\tl_if_eq:nnTF { ##1 } { < } {

\int_incr:N \l_tmpa_int
\int_compare:nF { \l_tmpb_int == 0 } {

% We already found ‘>’!
% Increment again to prevent match:
\int_incr:N \l_tmpa_int

}

\tl_set_eq:NN \l_tmpb_tl \l_tmpa_tl
\tl_clear:N \l_tmpa_tl

} {

\tl_if_eq:nnTF { ##1 } { > } {

\int_incr:N \l_tmpb_int

\tl_set_eq:NN \l_@@_overlay_tl \l_tmpa_tl
\tl_clear:N \l_tmpa_tl

} {

\tl_put_right:Nn \l_tmpa_tl { ##1 }

} }

}

% A single ‘<’ and a final, single ‘>’?
\bool_if:nTF {

\int_compare_p:n { \l_tmpa_int == \l_tmpb_int == 1 }
&&
\tl_if_empty_p:N \l_tmpa_tl

} {

We’ve matched a key with an overlay specification. If it’s got a (non-blank)
value, we include that in the key-setting code we’re building in \l tmpb tl, and
then we set the key, with the appropriate overlay specification.

\tl_if_blank:nF{ #1 } {
\tl_put_right:Nn \l_tmpb_tl {= #1}

}

Rather than setting the keys here, inside a group, we put the code into a variable

6.5 Options 93

that we’ll expand outside the group, later:

\tl_set:Nn \l_tmpa_tl {
\@@_keys_set_overlay:nnn

}
\tl_put_right:Nx \l_tmpa_tl { { \l_@@_overlay_tl } }
\tl_put_right:Nn \l_tmpa_tl { { pseudo } }
\tl_put_right:Nx \l_tmpa_tl { { \l_tmpb_tl } }

} {

We have not matched an overlay specification, so we just have an unknown
key. However, we have another special case to consider: If we’re processing
arguments to \\, we also permit a keyless value to be used to specify extra
space (normally done using extra-space). If the unknown key doesn’t have an
attached (non-blank) value, we treat the key itself as a value, and use it as extra
space. If this, too, fails, we emit an error message. Note that we’ll also make
sure the variable with the key-setting code is empty.

\tl_clear:N \l_tmpa_tl
\bool_if:nTF {

\bool_lazy_and_p:nn
{ \l_@@_in_eol_bool }
{ \tl_if_blank_p:n { #1 } }

} {
\tl_set_rescan:Nno

\l_@@_extra_space_tl { }
{ \l_keys_key_str }

} {
\msg_error:nnx

{ pseudo } { unknown-key }
{ \l_keys_path_str }

}
}

% Make sure extra space and key-setting carry over
% outside the group:
\exp_args:NNNVNNV

\group_end:
\tl_set:Nn \l_@@_extra_space_tl \l_@@_extra_space_tl
\tl_set:Nn \l_tmpa_tl \l_tmpa_tl

% Run the key-setting code with overlay specification:
\l_tmpa_tl

}

}

Option processing. To let the user work with the options (other than when
they’re available as optional arguments to other commands), we supply a com-
mand for setting them.

\cs_new:Npn \@@_set:n #1 { \keys_set:nn { pseudo } { #1 } }

94 Implementation

6.6 The row separator
Much of the work of the pseudo environment is performed by the row separator,
that is, the \\ command; whatever part of the line structure (see Chapter 4)
that’s not in the preamble must be handled by \\. For example, this is where
the prefix gets inserted. One reason for this is that there is no straightforward
way to insert the column separator (&) from the preamble itself; and if you want
to prevent the column separator insertion because you need to to some custom
work in the first column, you’ll probably want to suppress other parts of the
prefix as well, so they might as well be collected in one place.

Beyond inserting material such as \tabularnewlines and prefix contents,
\\ is also an entrypoint for local customization, i.e., modifying the indentation
level and setting any locally meaningful keys.

Indentation utilities. First we have some functions for modifying the indenta-
tion level—essentially just incrementing, decrementing and setting it to zero.

\cs_new:Npn \@@_inc_indent: {
\int_gincr:N \g_@@_indent_level_int

}

\cs_new:Npn \@@_dec_indent: {

If the user happens to dedent too much, we might as well be a bit forgiving,
and clamp the indent level to non-negative values:

% Not using \c_zero_int for compatibility
\int_compare:nNnT \g_@@_indent_level_int > 0 {

\int_gdecr:N \g_@@_indent_level_int
}

}

The actual row separator. The command consists of a few interacting macros.
The implementation of \\ is \@@_eol:, but that is just a thin wrapper that
counts pluses and minuses, before handing the control over to \@@_eol_tail.
This is where the remaining argument parsing takes place, and the \tabularnewline
is inserted, after which control is passed to \@@_bol: in order to begin a new
line—unless we’re at the end of the environment.

\cs_new:Npn \@@_eol_handle_args:nnn #1 #2 #3 {
% Make extra-space default key for keyless value:
\bool_set_true:N \l_@@_in_eol_bool
\@@_keys_set_overlay:nnn { #2 } { pseudo } { hl }
\keys_set:nn { pseudo } { #3 }

The variables underlying the keys (\l_@@_label_tl, etc.) are kept local, so
they’ll be restored after the environment, but in order to carry over to the next
line and its preamble, we need to perform some global assignments here.

\tl_gset_eq:NN \pseudolabel \l_@@_label_tl
\tl_gset_eq:NN \pseudobol \l_@@_bol_tl

6.6 The row separator 95

\tl_gset_eq:NN \pseudoeol \l_@@_eol_tl
\tl_gset_eq:NN \pseudosetup \l_@@_setup_tl

If starred, clear out the prefix:

\IfBooleanTF { #1 } {
\tl_gclear:N \g_@@_cur_prefix_tl

} {
\tl_gset_eq:NN \g_@@_cur_prefix_tl \pseudoprefix

}
}
\NewDocumentCommand \@@_eol_tail { s d<> +O{ } } {

\@@_eol_handle_args:nnn{#1}{#2}{#3}

A new line is begun only if we’re not at the end of the (or, at least of some)
environment. (We could have put the \tabularnewline outside, but then we’d
have a conditional at the beginning of the next line, which would mess up
\bottomrule or the like. We need to keep \@@_bol: alone at the start of the
line.) We call \tabularnewline either way, in particular for it to use any extra
space provided to extra-space.

It seems providing a zero-length extra space in \tabularnewline can cause
trouble,∗ so we treat that as a special case.

\dim_compare:nNnTF \l_@@_extra_space_tl = { 0pt } {
\tl_set_eq:NN \l_tmpa_tl \tabularnewline

} {
\tl_set:Nx \l_tmpa_tl {

\exp_not:N \tabularnewline [\l_@@_extra_space_tl]
}

}
\@@_skip_pars:n {

\peek_meaning_ignore_spaces:NTF \end {
\l_tmpa_tl

} {
\pseudoeol
\l_tmpa_tl
\@@_bol:

}
}

}

And here is the actual \@@_eol: command:

\cs_new:Npn \@@_eol: {

\@@_per_char:nnn { + } {
\@@_inc_indent:

} {
\@@_per_char:nnn { - } {

\@@_dec_indent:
} {

∗ Cf. https://github.com/mlhetland/pseudo.sty/issues/21

https://github.com/mlhetland/pseudo.sty/issues/21

96 Implementation

\@@_eol_tail
} }

}

The \@@_bol: command (currently) just inserts the prefix:

\cs_new:Npn \@@_bol: {
\g_@@_cur_prefix_tl

}

6.7 Various user commands
A few user-level wrappers around internal commands. First, a couple primarily
for use in the preamble, together with \pseudosavelabel and \pseudofont:

\NewDocumentCommand \pseudohpad { } {
\skip_horizontal:n { \l_@@_hpad_tl - \tabcolsep }

}
\NewDocumentCommand \pseudoindent { } {

\@@_indent:N { \g_@@_indent_level_int }
}

The \RestorePseudoBackslash command simply redefines the row separator,
and is used at the start of the pseudo environment. It may be useful for the user
if some other construct redefines \\ as well. (This is similar to the \arraycr
command of the array package.)

\NewDocumentCommand \RestorePseudoBackslash { } {
\cs_gset_eq:NN \\ \@@_eol:

}

We also have a command for restoring our definition of \= if it has been over-
written:

\NewDocumentCommand \RestorePseudoEq { } {
\cs_gset_eq:NN \= \@@_eq:

}

Finally, two utilities for working with options. The first (\pseudoset) directly
sets a collection of keys, while the second (\pseudodefinestyle) defines a new
key which can be used as a shortcut for setting multiple keys at some later point:

\NewDocumentCommand \pseudoset { +m }
{ \@@_set:n { #1 } }

\NewDocumentCommand \pseudodefinestyle { m +m } {
\keys_define:nn { pseudo } {

#1 .meta:n = {

https://ctan.org/pkg/array

6.8 The pseudo environment 97

#2
}

}
}

6.8 The pseudo environment
While this is the main attraction, it’s essentially just an augmented tabular
environment, which does a bit of setup initially, using the various macros already
described.

\NewDocumentEnvironment { pseudo } { +o s d<> +O{ } } {

\group_begin:

\@@_cs_gsave_as:NN \\ \c_@@_saved_cr_cs
\@@_cs_gsave_as:NN \= \c_@@_saved_eq_cs

% \RestorePseudoBackslash is inside the tabular
\RestorePseudoEq

\int_set:Nn \g_@@_last_saved_line_int {\arabic{pseudoline}}
\@@_star_setup:

\IfNoValueF { #1 } {
\pseudoset { #1 }

}
\@@_set_indent_length:

% If not manually set as compact/noncompact,
% set automatically:
\bool_if:NF \l_@@_compact_def_bool {

\bool_set:Nn \l_@@_compact_bool {
\mode_if_horizontal_p: && \mode_if_inner_p:

}
}

\bool_if:nF { \l_@@_compact_bool } {

\skip_set:Nn \l_tmpa_skip {
\l_@@_topsep_tl

}
\mode_if_vertical:TF {

\skip_add:Nn \l_tmpa_skip { \l_@@_partopsep_tl }
} {

\unskip \par
}

\addvspace { \l_tmpa_skip }

\noindent
\skip_horizontal:n{ \dim_eval:n { \l_@@_left_margin_tl } }

98 Implementation

}

\dim_set:Nn \tabcolsep { \l_@@_hsep_tl / 2 }
\tl_set_eq:NN \arraystretch \l_@@_line_height_tl

\stepcounter{pseudoenv}
\setcounter{pseudoline}{\l_@@_start_tl}
\addtocounter{pseudoline}{-1}

Before starting the actual tabular environment, we insert any user-configured
initialization.

\tl_use:N \l_@@_init_tl
\tl_use:N \l_@@_begin_tabular_tl

We use \noalign to be able to place these definitions inside the tabular, without
messing up \multicolumn or \hline or the like. It’s not really supposed to be
used in expl3; the alternative would be to create an extra dummy line, like:

\skip_vertical:n{ -\dim_eval:n{ \box_ht:N \@arstrutbox +
\box_dp:N \@arstrutbox } }

\tabularnewline

This would give us a fresh start, without moving vertically. It’s probably more
hacky than just using \noalign here, though, so . . .

\tex_noalign:D {

We keep the \\-definition inside the tabular, to override the redefinition placed
there by array, without patching any internals:

\RestorePseudoBackslash

In a tabularx, for example, the body is executed multiple times, so we must
make sure that any resets that are performed—such as setting the initial inden-
tation level—are performed each time:

\int_gset_eq:NN \g_@@_indent_level_int
\l_@@_initial_indent_level_int

Finally, we handle the line arguments, just like with the row separator:

\@@_eol_handle_args:nnn{#2}{#3}{#4}
}

Definitions and setup are done, we’ve left the \noalign, and we can start the
line:

https://ctan.org/pkg/expl3
https://ctan.org/pkg/array

6.8 The pseudo environment 99

\@@_bol:

} {

\tl_use:N \l_@@_end_tabular_tl

We’ll only adjust spacing here if we’re not compact. Otherwise, we’ll just end
the current group:

\bool_if:nTF { \l_@@_compact_bool } {

\group_end:

} {

\mode_if_vertical:F {
\unskip \par
\group_insert_after:N \@endparenv

}

\addvspace{ \l_tmpa_skip }

To ensure any local changes to prevdepth are used, we expand its local value
before setting csprevdepth outside the group.∗

\exp_args:NNNV
\group_end:
\dim_set:Nn \prevdepth \l_@@_prevdepth_tl

}

}

The starred version of the environment is just a wrapper that uses the custom
(and overridable) starred style:

\pseudodefinestyle{ starred }{
preamble = {

>{\pseudohpad\pseudoindent\pseudofont}
l
<{\pseudohpad}

},
prefix = {\pseudobol},

}

\NewDocumentEnvironment { pseudo* } { +O{} } {
\begin{pseudo}[starred, #1]
% \begin{pseudo} will "eat" any remaining arguments to pseudo*

} {
\end{pseudo}

}

∗ See, e.g., https://tex.stackexchange.com/questions/56294.

https://tex.stackexchange.com/questions/56294

100 Implementation

6.9 Boxes and floats
Some spacing and width values are taken from booktabs, to partly emulate its
table appearance. If booktabs is not loaded, we’ll just define these constants
ourselves; if booktabs is loaded later, it will blithely overwrite these.

\@ifpackageloaded { booktabs } { } {
\dim_const:Nn \aboverulesep { .40ex }
\dim_const:Nn \belowrulesep { .65ex }
\dim_const:Nn \heavyrulewidth { .08em }
\dim_const:Nn \lightrulewidth { .05em }

}

We also define some line widths based on those used by tikz.

\dim_const:Nn \c_@@_very_thin_dim { 0.2pt }
\dim_const:Nn \c_@@_thin_dim { 0.4pt }
\dim_const:Nn \c_@@_semithick_dim { 0.6pt }

We’ll be adjusting the spacing after the contents based on the value of \prevdepth.
If \prevdepth is negative, this is suppressed. Otherwise, we add vertical space
to the \prevdepth, to take us to (at least) .3\baselineskip. Since the mech-
anism is the same for the title and the body, we define a macro:

\cs_new:Npn \@@_prevdepth_adjustment: {
\par % Ensure vertical mode
\dim_compare:nNnF \prevdepth < \c_zero_dim {

\dim_compare:nNnT \prevdepth < { .3 \baselineskip } {
\skip_vertical:n { .3 \baselineskip - \prevdepth }
\skip_vertical:N \c_zero_dim % Hide previous skip

}
}

}

To permit the styling specifically of pseudo environments inside our boxes, we
define and use a pseudo style, and a hook (token list) that may overridden by
the user:

\pseudodefinestyle { in-float } {
% Initially empty

}
\tl_new:N \l_@@_float_init_tl

We now define some tcolorbox box styles. Rather than importing tcolorbox, we
just use its key management mechanism, pgfkeys, with the appropriate name-
space.

\pgfqkeys { /tcb/pseudo } {

We begin by defining our hook pseudo/init.

https://ctan.org/pkg/booktabs
https://ctan.org/pkg/booktabs
https://ctan.org/pkg/booktabs
https://ctan.org/pkg/pgf
https://ctan.org/pkg/pseudo
https://ctan.org/pkg/tcolorbox
https://ctan.org/pkg/tcolorbox
https://ctan.org/pkg/pgfkeys

6.9 Boxes and floats 101

init/.code = {
\tl_set:Nn \l_@@_float_init_tl { #1 }

},

The first box style (pseudo/boxruled) is the basis for the others.

boxruled/.style = {

By default, our boxes aren’t floats, but if the float style is used, we’ll want to
have the placement configured. The tcolorbox default is htb, but we’re emulating
normal floats, so we’ll use the normal LATEX default:

floatplacement = tbp,

Before the contents (which uses the upper part of the box), we adjust some
distances, and set \prevdepth, for consistent vertical spacing of the first line.
These settings may be overridden using before upper app, which appends code
to before upper. For example, one could change the \topsep by using before
upper app = {\topsep10pt}.∗

before˜upper = {
\dim_set:Nn \parskip { .3 \baselineskip }
\dim_set:Nn \topsep { .2 \baselineskip }
\dim_set:Nn \partopsep { 0pt }
\dim_set:Nn \prevdepth { .3 \baselineskip }
\RestorePseudoEq % Broken in floats
\pseudoset { in-float } % User hook (style)
\l_@@_float_init_tl % User hook (code)

},

At the end of the contents, we add some spacing, again for consistent vertical
alignment.

after˜upper = \@@_prevdepth_adjustment:,

Now we add spacing before and after the box, when it’s not used with the float
key. We just mirror the spacing of the pseudo environment (except without the
support for partopsep).

beforeafter˜skip˜balanced = \l_@@_topsep_tl,

Now we set up basic spacing for the contents. The spacing above and below the
title is the same as for the top row of a booktabs tabular. For the “body” of the
box (and the left/right), we add some extra space.

boxsep = 0pt,
toptitle = \belowrulesep,
bottomtitle = \aboverulesep,

∗ While you might want to modify \parskip, \topsep or \partopsep, there’s probably no
need to change \prevdepth.

https://ctan.org/pkg/tcolorbox
https://ctan.org/pkg/booktabs

102 Implementation

top = 2 \belowrulesep,
bottom = 2 \aboverulesep,
left = 2 \belowrulesep,
right = 2 \belowrulesep,

The title has a separate part called the description (in tcolorbox theorem terms).
We give the title one font (bold), and then reset that to \normalfont when we
get to the description.

fonttitle = \bfseries,
description˜font = \normalfont,

The spacing above and below the title is adjusted as for the body. We want to
separate the initial part of the title (e.g., “Algorithm 3.2”) from the description
by an \enskip (.5em horizontal space). However, a single normal space is hard-
coded into tcolorbox, so we’ll subtract the width of that. (We make sure to do
this with \normalfont, to not get the units warped by an extended bold, for
example.)

before˜title =
\dim_set:Nn \prevdepth { .3 \baselineskip },

after˜title = \@@_prevdepth_adjustment:,
separator˜sign = {

\normalfont
\skip_horizontal:n { .5em - \fontdimen2\font\space }

},

Finally, some basic styling.

sharp˜corners,
colback = white,
colbacktitle = white,
coltitle = black,
colframe = black,
boxrule = \c_@@_thin_dim,
titlerule = \c_@@_very_thin_dim,

},

The remaining box styles are based on boxruled, but rely on other skins (empty
and tile), which remove the default frame drawing, as some of the frame are
removed. (It would be possible to simply set the relevant widths to zero, but
this tends to leave perceptible hairlines in most PDF viewers—probably because
the fram is drawn by filling rather than drawing.)

ruled/.style = {
pseudo/boxruled,
empty,

Even though we’ve removed the default frame, we do want some rules. First the
various rule thicknesses (and some horizontal spacing) are set. The ones that
are missing have their thicknesses set to zero, for spacing/positioning purposes.

https://ctan.org/pkg/tcolorbox
https://ctan.org/pkg/tcolorbox

6.9 Boxes and floats 103

The titlerule is drawn normally, but for the top and bottom rules, we need to
use the borderline mechanism.

boxrule = 0pt,
toprule = \heavyrulewidth,
titlerule = \lightrulewidth,
bottomrule = \heavyrulewidth,
left = 0pt,
right = 0pt,
titlerule˜style = draw,
borderline˜north = {\heavyrulewidth}{0pt}{black},
borderline˜south = {\lightrulewidth}{0pt}{black},

},

The booktabs is a variation of ruled, where the bottom rule is also thick, to
match the style of booktabs tables.

booktabs/.style = {
pseudo/ruled,
no˜borderline,
bottomrule = \heavyrulewidth,
borderline˜horizontal = {\heavyrulewidth}{0pt}{black}

},

The boxed style is similar, with the titlerule removed, and with the borderline
drawn on all sides. Finally, we want to “simulate” the title just being the first
paragraph of the contents, so we set the space above the title almost equal to
the space used elsewhere above the content, zero out the spacing after the title,
and make the top spacing equal to the the normal \parskip (which we set to
.3\baselineskip in before upper).

boxed/.style = {
pseudo/boxruled,
empty,
titlerule = 0pt,
borderline = {\c_@@_thin_dim}{0pt}{black},
toptitle = 1.5 \belowrulesep,
bottomtitle = 0pt,
top = 0.3 \baselineskip,

},

The tworuled style is based on boxed (including the spacing adjustment be-
tween title and body), but removes the previously drawn borderlines, adjusts
the thicknesses, and draws new horizontal lines.

tworuled/.style = {
pseudo/boxed,
no˜borderline,
left = 0pt,
right = 0pt,
boxrule = 0pt,
toprule = \heavyrulewidth,

104 Implementation

bottomrule = \heavyrulewidth,
borderline˜horizontal = {\heavyrulewidth}{0pt}{black},

},

Finally, the filled style uses the tile skin, which has no frame, and is designed
for filling. In addition to the colors, there’s a slight spacing adjustment.∗ Since
we have no border, we increase the spacing a bit (though not at the top, to
prevent a “top-heavy” look, especially when dropping the title).

filled/.style = {
pseudo/boxruled,
tile,
colback = \pseudohlcolor, % black!12
colbacktitle = lightgray, % black!25
bottom = 2 \aboverulesep + \c_@@_thin_dim,
left = 2 \belowrulesep + \c_@@_thin_dim,
right = 2 \belowrulesep + \c_@@_thin_dim,

}

And that ends the tcolorbox definitions:

} % \pgfqkeys

6.10 Deprecations and warnings
Some commands are no longer intended for use, but are included for backward
compatibility. These will issue a deprecation warning when used.

\msg_new:nnn { pseudo } { useinstead } {
The˜#1 command˜(used˜\msg_line_context:)˜is˜deprecated;˜
use˜#2 instead.

}

\cs_new:Npn \@@_use_instead:nn #1 #2 {
\msg_warning:nnnn { pseudo } { useinstead } { #1 } { #2 }
% \tl_gset_eq:NN #1 #2

}

\NewDocumentCommand \pseudoslash { } {
\@@_use_instead:nn \pseudoslash \RestorePseudoBackslash
\RestorePseudoBackslash

}

\NewDocumentCommand \pseudoeq { } {
\@@_use_instead:nn \pseudoeq \RestorePseudoEq
\RestorePseudoEq

}

Finally, we define a warning to issue if hl is used without hpad.
∗ The tile skin also sets things like sharp corners and fonttitle, so some of what we inherit

from boxruled is a bit redundant, here.

https://ctan.org/pkg/tcolorbox

6.11 Compatibility 105

\msg_new:nnn { pseudo } { hl-without-hpad } {
hl˜used˜without˜hpad˜\msg_line_context:.

}

6.11 Compatibility
If the box and float functionality is used with a version of tcolorbox prior to 4.40
(e.g., on https://arxiv.org, at the time of writing), the beforeafter skip
balanced option won’t be defined

\pgfkeysifdefined { /tcb/beforeafter˜skip˜balanced/.@cmd } { } {

To handle this, at least for the time being, pseudo implements a fallback version
of this option.

\pgfqkeys { /tcb } {
before˜skip˜balanced/.style = { before = {

\int_compare:nNnF { \lastnodetype } = { -1 } {
\par
\mode_if_vertical:T {

\@@_if_minipage:
\dim_compare:nNnTF \parskip > \c_zero_dim {

\addvspace{ -\parskip }
}

\else:
\bool_lazy_or:nnTF {

\dim_compare_p:nNn
\prevdepth < \c_zero_dim

} {
\dim_compare_p:nNn

\prevdepth > { .3 \baselineskip }
} {

\addvspace { \skip_eval:n {
#1 - \parskip

} }
} {

\addvspace { \skip_eval:n {
#1 + .3 \baselineskip
- \prevdepth - \parskip

} }
}

\fi:
\nointerlineskip

}
}
\dim_set_eq:NN \lineskip \c_zero_dim
\noindent

} },
after˜skip˜balanced/.style = { after = {

\par
\mode_if_vertical:T {

https://ctan.org/pkg/tcolorbox
https://arxiv.org
https://ctan.org/pkg/pseudo

106 Implementation

\dim_set:Nn \prevdepth { .3\baselineskip }
\addvspace { \skip_eval:n { #1 - \parskip } }

}
} },
beforeafter˜skip˜balanced/.style = {

before˜skip˜balanced = { #1 },
after˜skip˜balanced = { #1 }

}
}

We need to know if the box is in a minipage, and this is normally detected
as part of \tcb@apply@box@options. We override that macro (if tcolorbox
has been loaded by the time we reach the end of the preamble) to insert the
approproate definition.

\RequirePackage{etoolbox}

\AtEndPreamble {
\@ifpackageloaded { tcolorbox } {

\tl_set_eq:NN \@@_orig_tcbopt \tcb@apply@box@options
\def \tcb@apply@box@options #1 {

\@@_orig_tcbopt { #1 }
\tl_set_eq:NN \@@_if_minipage: \if@minipage

}
} { }

}

End of \pgfkeysifdefined:

}

In older version of tcolorbox, we end up with extra space at the top of the box
contents. The simple solution here it so simply add -\parskip of vertical space.
This doesn’t really do much harm, but it is redundant with newer versions, and
it does interfere with the use of before upper app, for example. Therefore, we
only add this spacing in older versions (for simplicity, just going with 4.x and
older). We do this at the end of the preamble, and only if tcolorbox has actually
been loaded at that point.

\AtEndPreamble {
\@ifpackageloaded { tcolorbox } {

\cs_new:Npn \@@_vmaj:n #1 { \@@_vmaj_aux:w #1 \q_stop }
\cs_new:Npn \@@_vmaj_aux:w #1 . #2 \q_stop { #1 }

\tl_set:Nx \l_tmpa_tl {
\exp_args:No \@@_vmaj:n \tcb@version

}

\int_compare:nNnT \l_tmpa_tl < 5 {

\tcbuselibrary { hooks }

https://ctan.org/pkg/tcolorbox
https://ctan.org/pkg/tcolorbox
https://ctan.org/pkg/tcolorbox

6.11 Compatibility 107

\tcbset {
pseudo/boxruled/.append˜style = {

before˜upper˜app = \vspace { -\parskip }
}

}

}

}

}

108 Implementation

Bibliography

[1] T. H. Cormen et al. Introduction to Algorithms. 3rd ed. MIT Press, 2009.
[2] T. H. Cormen et al. Introduction to Algorithms. 4th ed. MIT Press, 2022.
[3] R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete Mathematics: A

Foundation for Computer Science. Addison-Wesley Professional, 1994.
[4] D. E. Knuth. “Random Matroids”. Discrete Mathematics 12.4 (1975), pp. 341–

358.
[5] D. P. Williamson and D. B. Shmoys. The Design of Approximation Algo-

rithms. Cambridge University Press, 2011.

109

