> Jeopardy Game

Solution

a	$\ln x+\ln y$
b	$\ln x-\ln y$
c	$x \ln y$
d	$y \ln x$
e	none of them

The function $y=x^{2} \cdot \sin x$ is

a
b
c

$\arctan 1=$

a	∞
b	π
b	$\overline{3}$
c	
	$\frac{4}{\pi}$
d	6
e	none of them

The equivalence " $a<b$ if and only if $f(a)<f(b)$ " is the property of a even functions
b one-to-one functions
c continuous functions
d increasing functions
e none of them

How many points of inflection is on the graph of the function $y=\sin x$ in the open interval $(0,2 \pi)$

a	none
b	one
c	two
d	three
	none of them

Find points of discontinuity of the function $y=\frac{x-4}{(x-2) \ln x}$

a	none
b	0
c	0, 1
d	0, 1, 2
e	0, 2
f	0, 1, 4
g	0, 4
h	none of them

Let f be a function and f^{-1} be its inverse. Then $f^{-1}(f(x))=$

a	0
b	1
	x
d	$f(x)$
e	$f^{-1}(x)$
	none of them

$\arcsin (\sin x)=x$ for every $x \in \mathbf{R}$

$\sqrt{\mathrm{a}}$	Yes
b	No

$\lim _{x \rightarrow-\infty} \operatorname{arctg} x=$

a	0
b	$\underline{\pi}$
	${ }^{2} \pi$
c	$\overline{2}$
d	∞
e	$-\infty$
f	none of them

$\lim \sin x=$ $x \rightarrow \infty$

a	1
b	-1
c	does not exist y
	none of them

$$
\lim _{x \rightarrow \infty} \frac{2 x^{3}+x^{2}+4}{x^{2}-x+2}=
$$

y	∞
b	2
c	0
d	none of them

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{+}} \frac{e^{1 / x}(x-1)}{x} \\
& \hline \mathrm{a} \\
& \hline \mathrm{~b} \\
& \hline \mathrm{c} \\
& \hline \mathrm{~d} \\
& \hline \mathrm{~d} \\
& \hline \mathrm{e} \\
& \hline \mathrm{f} \\
& \hline \mathrm{~g} \\
& \hline \mathrm{~h} \\
& \hline
\end{aligned}
$$

D

$$
\begin{aligned}
& \left(\frac{1}{\sqrt[3]{x}}\right)^{\prime}= \\
& \begin{array}{ll}
\mathrm{a} & \frac{1}{3} x^{-2 / 3} \\
\text { (b } & -\frac{1}{3} x^{-2 / 3} \\
\text { (c } & -\frac{1}{3} x^{1 / 3} \\
\hline \mathrm{~d} & \frac{1}{3} x^{-4 / 3} \\
\hline \mathrm{e} & -\frac{1}{3} x^{-4 / 3}
\end{array}
\end{aligned}
$$

f none of them

$$
(x-x \ln x)^{\prime}=
$$

a	$\ln x$
b	$-\ln x$
c	$1+\ln x$
d	$1-\ln x$
e	0
f	$1-\frac{1}{x}$

g none of them

$$
\begin{aligned}
& \left(x^{2} e^{x^{2}}\right)^{\prime} \\
& \begin{array}{|ll}
\hline \mathrm{a} & 2 x e^{2 x} \\
\hline \mathrm{~b} & 2 x e^{x^{2}} 2 x \\
\hline \frac{\mathrm{c}}{\mathrm{~d}} & 2 x e^{x^{2}}+x^{2} e^{x^{2}} \\
\hline \mathrm{~d} & 2 x e^{x^{2}}+x^{2} e^{x^{2}} 2 x \\
\hline \mathrm{e} & 2 x e^{x^{2}} 2 x+x^{2} e^{x^{2}} 2 x \\
\hline \mathrm{f} & \begin{array}{l}
\text { none of them }
\end{array}
\end{array}
\end{aligned}
$$

D

The definition of the derivative of the function f at the point a is
$\sqrt{\mathrm{a}} \lim _{h \rightarrow 0} \frac{f(x+h)+f(x)}{h}$
(b) $\lim _{h \rightarrow 0} \frac{f(x+h)}{h}$
c $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
d $\lim _{h \rightarrow 0} \frac{f(x)-f(x+h)}{h}$
$\sqrt{\mathrm{e}} \lim _{h \rightarrow 0} \frac{f(x-h)-f(x)}{h}$
f none of them

E

By theorem of Bolzano, the polynomial $y=x^{3}+2 x+4$ has zero on

| a | $(0,1)$ |
| :--- | :--- | :--- |
| b | $(1,2)$ |
| c | $(2,3)$ |
| | $(-1,0)$ |
| e | $(-2,-1)$ |
| | $(-3,-2)$ |
| | g
 none of them |

Let $a \in \operatorname{Im}(f)$. Then the solution of the equation $f(x)=a$ exists. This solution is unique if and only if

a f is one-to-one
b $\quad f$ is increasing
f continuous
f differentiable
none of them

If the function has a derivative at the point $x=a$, then it is
a increasing at a.
decreasing at a. one-to-one at a. continuous at a. undefined at a.

F

If both $y(a)=y^{\prime}(a)=y^{\prime \prime}(a)=0$, then the function
a has local maximum at a.
b has local minimum at a.
c has point of inflection at a.
d any of these possibilites may be true, we need more informations.

