>
‘e

Qrara

The cool TEX automation tool

Reference manual

The Island of TeX

4

Version 7.1.3

https://gitlab.com/islandoftex/arara
https://gitlab.com/islandoftex/arara

arara is licensed under the NEw BSD LICENSE. It is important to observe that the New BSD Li-
cense has been verified as a GPL-compatible free software license by the FREE SOFTWARE FOUN-
DATION, and has been vetted as an open source license by the OPEN SOURCE INITIATIVE.

New BSD License

Copyright 2012-2023, Island of TeX
All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

This software is provided by the copyright holders and contributors “as is” and any
express or implied warranties, including, but not limited to, the implied warranties
of merchantability and fitness for a particular purpose are disclaimed. In no event
shall the copyright holder or contributors be liable for any direct, indirect, inciden-
tal, special, exemplary, or consequential damages (including, but not limited to,
procurement of substitute goods or services; loss of use, data, or profits; or busi-
ness interruption) however caused and on any theory of liability, whether in con-
tract, strict liability, or tort (including negligence or otherwise) arising in any way
out of the use of this software, even if advised of the possibility of such damage.

https://opensource.org/licenses/BSD-3-Clause
http://www.fsf.org/%22
http://www.fsf.org/%22
http://www.opensource.org/

Introduction
What is this tool?
Core concepts
Operating system remarks

Support

Important concepts
Rules
Directives

Important changes in version 7

Command line
User interface design
Options

File name lookup

Configuration file
File lookup

Basic structure

Logging
System information
Directive extraction
Directive normalization

Rule interpretation

Projects
Rationale

File structure

Methods

Files

The

Conditional flow
Strings

Operating systems
Type checking
Classes and objects
Dialog boxes
Commands

Others

official rule pack
animate
asymptote
authorindex
bib2gls
biber
bibtex
bibtex8
bibtexu
clean
context
convert
copy
csplain
datatooltk
detex
dvipdfm
dvipdfmx
dvips
dvipspdf
dvisvgm
etex
fig2dev
frontespizio
ghostscript
gnuplot
halt

indent
knitr

latex
latexmk
(lmk
[tx2any
luahbtex
lualatex
luatex
make
makeglossaries
makeglossarieslite
makeindex
metapost
mkdir
move
nomencl
pbibtex
pdfcrop
pdfcsplain
pdflatex
pdftex
pdftk
perltex
platex
ps2pdf
pythontex
qpdf
rmdir
sage
sketch
songidx
spix

tex
texcount
texindy
tikzmake
upbibtex

uplatex

uptex
xdvipdfmx
xelatex
xetex
xindex

xindy

Building arara
Requirements
Compiling the tool
Fetching the sources
Building the executable

Executing the fresh build

Deploying the tool
Directory structure
Defining a location

Tool wrapping

Introduction to the YAML format
Collections
Scalars
Tags
Further reading

MVEL
Basic usage
Inline lists, maps and arrays
Property navigation
Flow control
Projections and folds
Assignments
Basic templating

Further documentation

Hello there, welcome to arara, the cool TeX automation tool! This chapter is actually a quick in-
troduction to what you can (and cannot) expect from arara. For now, concepts will be informally
presented and will be detailed later on, in the next chapters.

What is this tool?

Good question! arara is a TeX automation tool based on rules and directives. It is, in some as-
pects, similar to other well-known tools like latexmk and rubber. The key difference (and
probably the selling point) might be the fact that arara aims at explicit instructions in the
source code (in the form of comments) in order to determine what to do instead of relying on
other resources, such as log file analysis. It is a different approach for an automation tool, and
we have both advantages and disadvantages of such design. Let us use the following file hel-
lo.tex as an example:

\documentclass{article}

\begin{document}
Hello world!
\end{document}

How would one successfully compile hello.tex with Latexmk and rubber, for instance? It is
quite straightforward: it is just a matter of providing the file to the tool and letting it do the
hard work:

$ latexmk -pdf hello.tex
$ rubber —--pdf hello.tex

The mentioned tools perform an analysis on the file and decide what has to be done. However,
if one tries to invoke arara on hello.tex, | am afraid nothing will be generated; the truth is,
arara does not know what to do with your file, and the tool will even raise an error message
complaining about this issue:

What is this tool? 8

$ arara hello.tex

/2N A A
GG
N N N

Processing "hello.tex" (size: 70 B, last modified: 12/28/2020
07:03:16), please wait.

ERROR

It looks like no directives were found in the provided file. Make
sure to include at least one directive and try again.

Total: 0.04 seconds

Quite surprising. However, this behaviour is not wrong at all, it is completely by design: arara
needs to know what you want. And for that purpose, you need to tell the tool what to do.

A very important concept

That is the major difference of arara when compared to other tools: it is not
an automatic process and the tool does not employ any guesswork on its
own. You are in control of your documents; arara will not do anything unless
you teach it how to do a task and explicitly tell it to execute the task.

Now, how does one tell arara to do a task? That is actually the easy part, provided that you have
everything up and running. We accomplish the task by adding a special comment line, hereafter
known as directive, somewhere in our hello. tex file (preferably in the first lines):

% arara: pdflatex
\documentclass{article}

\begin{document}
Hello world!
\end{document}

For now, do not worry too much about the terms, we will come back to them later on, in IMPOR-
TANT CONCEPTS. It suffices to say that arara expects you to provide a list of tasks, and this is done
by inserting special comments in the source file. Let us see how arara behaves with this updat-
ed code:

$ arara hello.tex

What is this tool? 9

/2N VAN A
G G e
PRI [[VY) W

Processing "hello.tex" (size: 88 B, last modified: 12/28/2020
07:05:05), please wait.

(PDFLaTex) PDFLaTeX engine i, SUCCESS

Total: 0.56 seconds

Hurrah, we finally got our document properly compiled with a TeX engine by the inner workings
of our beloved tool, resulting in an expected hello.pdf file created using the very same sys-
tem call that typical automation tools like Latexmk and rubber use. Observe that arara works
practically on other side of the spectrum: you need to tell it how and when to do a task.

Core concepts

When adding a directive in our source code, we are explicitly telling the tool what we want it to
do, but | am afraid that is not sufficient at all. So far, arara knows what to do, but now it needs
to know how the task should be done. If we want arara to run pdflatex on hello.tex, we
need to have instructions telling our tool how to run that specific application. This particular
sequence of instructions is referred as a rule in our context.

Note on rules

Although the core team provides a lot of rules shipped with arara out of the
box, with the possibility of extending the set by adding more rules, some
users might find this decision rather annoying, since other tools have most of
their rules hard-coded, making the automation process even more transpar-
ent. However, since arara does not rely on a specific automation or compila-
tion scheme, it becomes more extensible. The use of directives in the source
code make the automation steps more fluent, which allows the specification
of complex workflows much easier.

Despite the inherited verbosity of automation steps not being suitable for small documents,
arara really shines when you have a document which needs full control of the automation
process (for instance, a thesis or a manual). Complex workflows are easily tackled by our tool.

Rules and directives are the core concepts of arara: the first dictates how a task is done, and
the latter is the proper instance of the associated rule on the current document, i.e, when and
where the commands must be executed.

Core concepts 10

The name

Do you like araras? We do, specially our tool which shares the same name of
this colorful bird.

The tool name was chosen as an homage to a Brazilian bird of the same
name, which is a macaw. The word arara comes from the Tupian word a'rara,
which means big bird (much to my chagrin, Sesame Street's iconic character
Big Bird is not a macaw; according to some sources, he claims to be a golden
condor). Araras are colorful, noisy, naughty and very funny. Everybody loves
araras. The name seemed catchy for a tool and, in the blink of an eye, arara
was quickly spread to the whole TeX world.

Now that we informally introduced rules and directives, let us take a look on how arara actually
works given those two elements. The whole idea is pretty straightforward, and | promise to re-
visit these concepts later on in this manual for a comprehensive explanation (more precisely, in
IMPORTANT CONCEPTS).

First and foremost, we need to add at least one instruction in the source code to tell arara what
to do. This instruction is named a directive and it will be parsed during the preparation phase.
Observe that arara will tell you if no directive was found in a file, as seen in our first interaction
with the tool.

An arara directive is usually defined in a line of its own, started with a comment (denoted by a
percent sign in TeX and friends), followed by the word arara: and task name:

% arara: pdflatex
\documentclass{article}

Core concepts 11

Our example has one directive, referencing pdflatex. It is important to observe that the
pdflatex identifier does not represent the command to be executed, but the name of the rule
associated with that directive.

Once arara finds a directive, it will look for the associated rule. In our example, it will look for a
rule named pdflatex which will evidently run the pdflatex command line application. Rules
are YAML files named according to their identifiers followed by the yaml extension and follow a
strict structure. This concept is covered in IMPORTANT CONCEPTS.

Now, we have a queue of pairs (directive, rule) to process. For each pair, arara will map the di-
rective to its corresponding rule, evaluate it and run the proper command. The execution chain
requires that command i was successfully executed to then proceed to command i + 1, and so
forth. This is also by design: arara will halt the execution if any of the commands in the queue
had raised an error. How does one know if a command was successfully executed? arara checks
the corresponding exit status available after a command execution. In general, a successful exe-
cution yields 0 as its exit status.

In order to decide whether a command execution is successful, arara relies on exit status
checking. Typically, a command is successful if, and only if, its resulting exit status is 0 and no
other value. However, we can define any value, or even forget about it and make it always return
a valid status regardless of execution (for instance, in a rule that always is successful — see, for
instance, the clean rule).

That is pretty much how arara works: directives in the source code are mapped to rules. These
pairs are added to a queue. The queue is then executed and the status is reported. More details
about the expansion process are presented in IMPORTANT CONCEPTS. In short, we teach arara to
do a task by providing a rule, and tell it to execute it through directives in the source code.

Operating system remarks

The application is written using the Kotlin language, so arara runs on top of a Java virtual ma-
chine, available on all the major operating systems — in some cases, you might need to install
the proper virtual machine. We tried very hard to keep both code and libraries compatible with
older virtual machines or from other vendors. Currently, arara is known to run on Java 8 to 18,
from any vendor.

Outdated Java virtual machines

Dear reader, beware of outdated software, mainly Java virtual machines! Al-
though arara offers support for older virtual machines, try your best to keep
your software updated as frequently as possible. The legacy support exists
only for historical reasons, and also due to the sheer fact that we know some

Operating system remarks 12

people that still runs arara on very old hardware. If you are not in this partic-
ular scenario, get the latest virtual machine.

In BUILDING ARARA, we provide instructions on how to build arara from sources using Gradle.
Even if you use multiple operating systems, arara should behave the same, including the rules.
There are helper functions available in order to provide support for system-specific rules based
on the underlying operating system.

Support

If you run into any issue with arara, please let us know. We all have very active profiles in the
TEX COMMUNITY AT STACKEXCHANGE, SO just use the arara tag in your question and we will help
you the best we can (also, take a look at their STARTER GUIDE).

We also have a MATRIX and GITTER chat rooms, in which we occasionally hang out. Also, if you
think the report is worthy of an issue, open one in our GITLAB REPOSITORY.

We really hope you like our humble contribution to the TeX community. Let arara enhance your
TeX experience, it will help you when you will need it the most. Enjoy the manual.

Support 13

https://tex.stackexchange.com/
https://tex.meta.stackexchange.com/q/1436
https://matrix.to/#/!HfEWIEvFtDplCLSQvz:matrix.org?via=matrix.org
https://gitter.im/Island-of-TeX/arara
https://gitlab.com/islandoftex/arara/issues

Time for our first proper contact with arara! | must stress that is very important to understand a
few concepts in which arara relies before we proceed to the usage itself. Do not worry, these
concepts are easy to follow, yet they are vital to the comprehension of the application and the
logic behind it.

Rules

A rule is a formal description of how arara handles a certain task. For instance, if we want to
use pdflatex with our tool, we should have a rule for that. Directives are mapped to rules, so
a call to a non-existent rule foo, for instance, will indeed raise an error:

/N VAN A
GG
NP DU B VN) N

Processing "docl.tex" (size: 31 B, last modified: 12/28/2020
07:37:37), please wait.

ERROR

I could not find a rule named "foo" in the provided rule paths.
Perhaps a misspelled word? I was looking for a file named
"foo.yaml" in the following paths in order of priority:
(/opt/islandoftex/arara/rules)

Total: 0.03 seconds
Once a rule is defined, arara automatically provides an access layer to that rule through direc-
tives in the source code, a concept to be formally introduced later on. Observe that a directive

reflects a particular instance of a rule of the same name (i.e, a foo directive in a certain source
code is an instance of the foo rule).

Rules 14

A note about rules

From version 6.0 on, rules included in the core distribution have been re-
named to have a unique prefix in the texmf tree. File names should not be re-
lied upon.

In short, a rule is a plain text file written in the YAML format, described in YAML. | opted for this
format because back then it was cleaner and more intuitive to use than other markup lan-
guages such as XML, besides of course being a data serialization standard for programming lan-
guages.

Animal jokes

As a bonus, the acronym YAML rhymes with the word camel, so arara is heavi-
ly environmentally friendly. Speaking of camels, there is the programming
reference as well, since this amusing animal is usually associated with Perl
and friends.

The default rules, i.e, the rules shipped with arara, are placed inside a special subdirectory
named rules/ inside another special directory named ARARA_HOME (the place where our tool
is installed). We will learn later on that we can add an arbitrary number of paths for storing our
own rules, in order of priority, so do not worry too much about the location of the default rules,
although it is important to understand and acknowledge their existence. Observe, however, that
rules in the core distribution have a different naming scheme than the ones located in the user
space.

The following list describes the basic structure of an arara rule by presenting the proper ele-
ments (or keys, if we consider the proper YAML nomenclature). Observe that elements marked
as [M] are mandatory (i.e, the rule has to have them in order to work). Similarly, elements
marked as [O] are optional, so you can safely ignore them when writing a rule for our tool. A key
preceded by context - indicates a context and should be properly defined inside it.

- [M] config: This keyword is mandatory and must be the first line of any arara rule. It
denotes the object mapping metadata to be internally used by the tool. The tool requires
it, so make sure to start all rules with a !config keyword.

- [M] identifier: This key acts as a unique identifier for the rule (as expected). It is high-
ly recommended to use lowercase letters without spaces, accents or punctuation sym-
bols, as good practice (again). As a convention, if you have an identifier named
pdflatex, the rule filename must be pdflatex.yaml (like our own instance). Please
note that, although yml is known to be a valid YAML extension as well, arara only consid-
ers files ending with the yaml extension. This is a deliberate decision.

Rules 15

Rules

identifier: pdflatex

- [M] name: This key holds the name of the task (a rule instantiated through a directive) as

a plain string. When running arara, this value will be displayed in the output enclosed in
parentheses.

name: PDFLaTeX

- [0] authors: We do love blaming people, so arara features a special key to name the rule

authors (if any) so you can write stern electronic communications to them! This key holds
a list of strings. If the rule has just one author, add it as the first (and only) element of
the list.

authors:
- Marco Daniel
- Paulo Cereda

- [M] commands: This key denotes a potential list of commands. From the user perspective,

each command is called a subtask within a task (rule and directive) context. A task may
represent only a single command (a single subtask), as well as a sequence of commands
(subtasks). For instance, the frontespizio rule requires at least two commands. So, as
a means of normalizing the representation, a task composed of a single command (single
subtask) is defined as the only element of the list, as opposed to previous versions of
arara, which had a specific key to hold just one command.

In order to properly set a subtask, the keys used in this specification are defined inside
the commands - context and presented as follows.

o [0] commands - name: This key holds the name of the subtask as a plain string.
When running arara, this value will be displayed in the output. Subtask names are
displayed after the main task name. By the way, did you notice that this key is en-
tirely optional? That means that a subtask can simply be unnamed, if you decide
so. However, such practice is not recommended, as it's always good to have a visual
description of what arara is running at the moment, so name your subtasks proper-

ly.

o [M] commands - command: This key holds the action to be performed, typically a
system command. The tool offers two types of returned values:

= A Command object: arara features an approach for handling system com-
mands based on a high level structure with explicit argument parsing named
Command. In order to use this approach, we need to rely on orb tags and use

16

Rules

a helper method named getCommand to obtain the desired result. We will
detail this method later on.

command: "@{ return getCommand('ls') }"

= A boolean value: it is also possible to exploit the expressive power of the un-
derlying scripting language available in the rule context (see MVEL for more
details) for writing complex code. In this particular case, since the computa-
tion is being done by arara itself and not the underlying operating system,
there will not be a command to be executed, so simply return a boolean val-
ue — either an explicit true or false value or a logical expression — to indi-
cate whether the computation was successful.

command: "@{ return 1 == 1 }"

It is also worth mentioning that arara also supports lists of commands represented
as Command objects, boolean values or a mix of them. This is useful if your rule has
to decide whether more actions are required in order to accomplish a task. In this
case, our tool will take care of the list and execute each element in the specified
order.

command: "@{ return [getCommand('ls'), getCommand('ls')] }"

As an example, please refer to the official clean rule for a real scenario where a
list of commands is successfully employed: for each provided extension, the rule
creates a new cleaning command and adds it to a list of removals to be processed
later.

There is at least one variable available in the command context and is described as
follows (note that MVEL variables and orb tags are discussed in MVEL). A variable
will be denoted by ¢ variable in this list. For each rule argument (defined later
on), there will be a corresponding variable in the command context, directly ac-
cessed through its unique identifier.

= ¢ reference: This variable holds the canonical, absolute path representa-
tion of the file name as a File object. This is useful if it's necessary to know
the hierarchical structure of a project. Since the reference is a Java object, we
can use methods available in the File class.

Quote handling
The YAML format disallows key values starting with @ without
proper quoting. This is the reason we had to use double quotes

17

Rules

for the value and internally using single quotes for the command
string. Also, we could use the other way around, or even using
only one type and then escaping them when needed. This is ex-
cessively verbose but needed due to the format requirement.

From version 6.0 on, the <arara> shorthand is not supported
anymore. We encourage the use of a YAML feature named folded
style when writing such values. The idea here is to use the scalar
content in folded style. The new code will look like this:

command: >

e{
return getCommand('ls')

3

Mind the indentation, as YAML requires it to properly identify
blocks. If your code still relies on the <arara> shorthand, please
update it accordingly to use YAML's folded style instead.

o [0] commands - exit: This key holds a special purpose, as it represents a custom

exit status evaluation for the corresponding command. In general, a successful exe-
cution has zero as an exit status, but sometimes we end up with tools or situations
where we need to override this check for whatever reason. For this purpose, simply
write a MVEL expression without orb tags as plain string and use the special vari-
able ¢ value if you need the actual exit status returned by the command, avail-
able at runtime. For example, if the command returns a non-zero value indicating a
successful execution, we can write this key as:

exit: value > 0

If the execution should be marked as successful by arara regardless of the actual
exit status, you can simply write true as the key value and this rule will never fail,
for obvious reasons.

For instance, consider a full example of the commands key, defined with only one com-
mand, presented as follows. The hyphen denotes a list element, so mind the indentation
for correctly specifying the component keys. Also, note that, in this case, the exit key
was completely optional, as it does the default checking, and it was included for didactic
purposes.

commands:
— name: The PDFLaTeX engine

18

command: >

e{
return getCommand('pdflatex', file)
¥

exit: value == 0

- [M] arguments: This key holds a list of arguments for the current rule, if any. The argu-
ments specified in this list will be available to the user later on for potential completion
through directives. Once instantiated, they will become proper variables in the command
contexts. This key is mandatory, so even if your rule does not have arguments, you need
to specify a list regardless. In this case, use the empty list notation:

arguments: []

In order to properly set an argument, the keys used in this specification are defined in-
side the arguments - context and presented as follows.

o [M] arguments - identifier: This key acts as a unique identifier for the argu-
ment. It is highly recommended to use lowercase letters without spaces, accents or
punctuation symbols, as a good practice. This key will be used later on to set the
corresponding value in the directive context.

identifier: shell

It is important to mention that not all names are valid as argument identifiers.
arara has restrictions on two names, described as follows, which cannot be used.

Reserved names for rule arguments
Our tool has two names reserved for internal use: files, and
reference. Do not use them as argument identifiers!

o [0] arguments - flag: This key holds a plain string and is evaluated when the
corresponding argument is defined in the directive context. After being evaluated,
the result will be stored in a variable of the same name to be later accessed in the
command context. In the scenario where the argument is not defined in the direc-
tive, the variable will hold an empty list.

Return type
From version 6.0 on, the return value for flag is now trans-
formed into a proper List<String> type instead of a plain,

Rules 19

generic Object reference, as seen in previous versions. The fol-
lowing rules apply:

» |f a list is returned, it will be flattened and all values will
be turned into strings.

|: |a|, 1‘ [2, |b| :| :| N |: Iall |1|, |2|’ |b| :|

» |f astring is returned, a single list with only that string will
be returned.

"hello world' » ['hello world']

= |fanother type is returned, it will be turned into string.

3.1415 » ['3.1415']

Other return types than string or lists are not encouraged. How-
ever, if such types are used, they will be transformed into a list of
strings, as previously seen. If you need interoperability of com-
plex command code with older versions, use the following trick to
get the value of previously non-list values:

islList(variable) ? variable[0] : variable

In this way, one can keep a compatibility layer for older versions.
However, it is highly recommended to use the latest version of
arara whenever possible.

flag: >
e{
isTrue(parameters.shell, '--shell-escape',
'——no-shell-escape')
¥

There are two variables available in the flag context, described as follows. Note
that are also several helper methods available in the rule context (for instance,

Rules 20

% 1isTrue presented in the previous example) which provide interesting features
for rule writing. They are detailed later on, in METHODS.

*= ¢ parameters: This variable holds a map of directive parameters available
at runtime. For each argument identifier listed in the arguments list in the
rule context, there will be an entry in this variable. This is useful to get the
actual values provided during execution and take proper actions. If a param-
eter is not set in the directive context, the reference will still exist in the map,
but it will be mapped to an empty string.

check = parameters.contains("foo");

= o reference: This variable holds the canonical, absolute path representa-
tion of the file name as a File object. This is useful if it is necessary to know
the hierarchical structure of a project. Since the reference is a Java object, we
can use methods available in the File class.

parent = reference.getParent();

In the previous example, observe that the MVEL expression defined in the flag key
checks if the user provided an affirmative value regarding shell escape, through
comparing ¢ parameters.shell with a set of predefined affirmative values. In
any case, the corresponding command flag is defined as result of such evaluation.

o [0] arguments - default: As default behaviour, if a parameter is not set in the
directive context, the reference will be mapped to an empty string. This key exists
for the exact purpose of overriding such behaviour and always expects a string val-
ue, as if it were provided by the user in the directive context.

No more evaluation and variables

In earlier versions, arara used to evaluate the default key and
return a plain, generic Object reference, which was then for-
warded directly to the corresponding command context. The
workflow changed for version 6.0 on.

From now on, default always expects a string value, as if it
were provided by the user in the directive context. No variables
are available and no more evaluation is expected from this key.
Consider the following example:

default: "@{ 1 == 1 3"

Rules 21

Rules

There is an orb tag expression in this string, which should re-
solve to true in previous versions of arara. However, from now
on, it will not be evaluated at all and the literal string will be as-
signed to the default key.

The default key, whenever available and in the scenario in
which the user does not provide an explicit value for the current
argument in the directive context, is forwarded to the flag con-
text for proper evaluation. Then the workflow proceeds as usual.

Return type

The default key, whenever available, returns a string to be eval-
uated in the corresponding flag context. However, if the target
evaluation context does not exist (i.e, there is no corresponding
f1lag key), the value is transformed into a list of strings and then
forwarded directly to the command context. For instance:

- identifier: foo
default: 'bar'

This scenario will directly forward ['bar'] (a list of strings
containing the specified value as single element) as the value for
the ¢ foo variable in the corresponding command context.

default: 'stable'

o [0] arguments - required: There might be certain scenarios in which a rule
could make use of required arguments (for instance, a copy operation in which
source and target must be provided). The required key acts as a boolean switch
to indicate whether the corresponding argument should be mandatory. In this case,
set the key value to true and the argument becomes required. Later on at runtime,
arara will throw an error if a required parameter is missing in the directive.

required: false

Note that setting the required key value to false corresponds to omitting the
key completely in the rule context, which resorts to the default behaviour (i.e, all
arguments are optional).

22

Note on argument keys

As seen previously, both flag and default are marked as optional,
but at least one of them must occur in the argument specification, oth-
erwise arara will throw an error, as it makes no sense to have no argu-
ment handling at all. Please make sure to specify at least one of them
for a consistent behaviour!

For instance, consider a full example of the arguments key, defined with only one argu-
ment, presented as follows. The hyphen denotes a list element, so mind the indentation
for correctly specifying the component keys. Also, note that, in this case, keys required
and default were completely optional, and they were included for didactic purposes.

arguments:
- ddentifier: shell
flag: >
ef
isTrue(parameters.shell,
'-—shell-escape',
'——no-shell-escape')
¥

required: false
default: 'false'

This is the rule structure in the YAML format used by arara. Keep in mind that all subtasks in a
rule are checked against their corresponding exit status. If an abnormal execution is detected,
the tool will instantly halt and the rule will fail. Even arara itself will return an exit code differ-
ent than zero when this situation happens (detailed in COMMAND LINE).

Directives

A directive is a special comment inserted in the source file in which you indicate how arara
should behave. You can insert as many directives as you want. The tool will read and extract di-
rectives from beginning of the file by default. See Enabling header mode by default in next sec-
tion for more info.

There are two types of directives in arara which determine the way the corresponding rules will
be instantiated. They are listed as follows. Note that directives are always preceded by the
arara: pattern.

- Empty directive: This type of directive has already been mentioned in INTRODUCTION, it
has only the rule name (which refers to the identifier key from the rule of the same

Directives 23

name). All rule arguments are mapped to empty lists, except the ones with default val-
ues, mapped to lists containing single elements.

% arara: pdflatex

- Parametrized directive: This type of directive also has the rule name (which refers to the
identifier key from the rule of the same name), and also contains a map of parame-
ters in order to provide additional information to the corresponding rule. This map is de-
fined in the YAML format, based on the inline style.

% arara: pdflatex: { shell: yes }

Observe that arara relies on named parameters, so they are mapped by their correspond-
ing argument identifiers and not by their positions. The syntax for a parameter is de-
scribed as follows. Please refer to the map definition in YAML.

key : value

Note that virtually any type of data can be used as parameter value, so lists, integers,
booleans, sets and other maps are available as well. However, there must be the correct
handling of such types in the rule context.

When handling parametrized directives, arara always checks if directive parameters and rule ar-
guments match. If we try to inject a non-existent parameter in a parametrized directive, the tool
will raise an error about it:

/2N VAN A
G o T I I G o B B R G
|\ [B VR B e

Processing "hello.tex" (size: 102 B, last modified: 12/28/2020
10:28:00), please wait.

ERROR

T found these unknown keys in the directive: (foo). This should
be an easy fix, just remove them from your map.

Total: 0.21 seconds

As the message suggests, we need to remove the unknown parameter key from our directive or
rewrite the rule in order to include it as an argument. The first option is, of course, easier.

Directives 24

Sometimes, directives can span several columns of a line, particularly the ones with several pa-
rameters. We can split a directive into multiple lines by using the arara: --> mark (also
known as arrow notation during development) to each line which should compose the directive.
We call it a multiline directive. Let us see an example:

o°

arara: pdflatex: {

% arara: ——> shell: yes,
% arara: —-—> synctex: yes
% arara: ——> }

It is important to observe that there is no need of them to be in contiguous lines, i.e, provided
that the syntax for parametrized directives hold for the line composition, lines can be distrib-
uted all over the code. In fact, the log file (when enabled) will contain a list of all line numbers
that compose a directive. This feature is discussed later on.

Keep lines together

Although it is possible to spread lines of a multiline directive all over the
code, it is considered good practice to keep them together for easier reading
and editing. In any case, you can always see which lines compose a directive
by inspecting the log file.

arara provides logical expressions, written in the MVEL language, and special operators pro-
cessed at runtime in order to determine whether and how a directive should be processed. This
feature is named directive conditional, or simply conditional as an abbreviation. The following
list describes all conditional operators available in the directive context.

- [a priori] if: The associated MVEL expression is evaluated beforehand, and the directive
is interpreted if, and only if, the result of such evaluation is true. This directive, when the
conditional holds true, is executed at most once.

% arara: pdflatex if missing('pdf') || changed('tex')

- [a posteriori] until: The directive is interpreted the first time, then the associated MVEL
expression evaluation is done. While the result holds false, the directive is interpreted
again and again. There are no guarantees of proper halting.

% arara: pdflatex until !found('log', 'undefined references')

- [a priori] unless: Technically an inverted if conditional, the associated MVEL expression
is evaluated beforehand, and the directive is interpreted if, and only if, the result is false.
This directive, when the conditional holds false, is executed at most once.

Directives 25

% arara: pdflatex unless unchanged('tex') && exists('pdf')

- [a priori] while: The associated MVEL expression is evaluated beforehand, the directive is
interpreted if, and only if, the result is true, and the process is repeated while the result
still holds true. There are no guarantees of proper halting.

% arara: pdflatex while missing('pdf') ||
% arara: ——> found('log', 'undefined references')

Several methods are available in the directive context in order to ease the writing of condition-
als, such as ¢ missing, ¢ changed, ¢ found, ¢ unchanged, and % exists featured in
the previous examples. They will be properly detailed later on.

No infinite loops

Although there are no conceptual guarantees for proper halting of unbound-
ed loops, we have provided a technical solution for potentially infinite itera-
tions: arara has a predefined maximum number of loops. The default value is
set to 10, but it can be overridden either in the configuration file or with a
command line flag. We discuss this feature later on.

All directives, regardless of their type, are internally mapped alongside with the reference pa-
rameter, discussed earlier on, as a special variable in the rule context. When inspecting the log
file, you will find all map keys and values for each extracted directive (actually, there is an en-
tire log section devoted to detailing directives found in the code). See, for instance, the report
of the directive extraction and normalization process performed by arara when inspecting
doc2.tex, available in the log file. Note that timestamps were deliberately removed in order to
declutter the output, and line breaks were included in order to easily spot the log entries.

% arara: pdflatex
% arara: pdflatex: { shell: yes }
\documentclass{article}

\begin{document}
Hello world.
\end{document}
\end{ncodebox}

Directive: { identifier: pdflatex, parameters:
{reference=/home/islandoftex/doc2.tex},
conditional: { NONE }, lines: [1] }

Directives 26

Directive: { identifier: pdflatex, parameters:
{shell=yes, reference=/home/islandoftex/doc2.tex},
conditional: { NONE }, lines: [2] }

The directive context also features another special parameter named files which expects a
non-empty list of file names as plain string values. For each element of this list, arara will repli-
cate the current directive and point the element being iterated as current reference value
(resolved to a proper absolute, canonical path of the file name). See, for instance, the report of
the directive extraction and normalization process performed by arara when inspecting
doc3.tex, available in the log file.

% arara: pdflatex: { files: [docl.tex, doc2.tex] }
Hello world.
\bye

Directive: { identifier: pdflatex, parameters:
{reference=/home/islandoftex/docl.tex},
conditional: { NONE }, lines: [1] }

Directive: { identifier: pdflatex, parameters:
{reference=/home/islandoftex/doc2.tex},
conditional: { NONE }, lines: [1] }

It is important to observe that, in this case, doc3.tex is a plain TeX file, but pdflatex is actu-
ally being called on two LaTeX documents, first docl.tex and then, at last, doc2 . tex.

Even when a directive is interpreted with a file other than the one being processed by arara
(through the magic of the files parameter), it is possible to use helper methods in the rule
context to get access to the original file and reference. Such methods are detailed later on.

Orb tag expansion in parameter values
From version 6.0 on, arara is able to expand orb tags within a special op—
tions parameter in the directive context. For instance:

arara: lualatex: {

%

% arara: ——> options: ['-—output-directory=@{getSession().
% arara: ——> get("arg:builddir")}!
% arara: ——>]

% arara: ——> }

This feature supports the following methods with their documented mean-
ings, as seen in METHODS: % getBasename, % getSession and ¢ getO-
riginalReference.

Directives 27

Keep in mind that this feature is disabled when arara is running in safe
mode, as seen in COMMAND LINE.

Important changes in version 7

A note to users

If this is your first time using arara or you do not have custom rules in the
old format, you can safely ignore this section. All rules shipped with our tool
are already written in the new format.

Enabling header mode by default

The header mode (parse only the first commented lines of a file) is now en-
abled by default. You may return to the old behavior disabling header mode
in the configuration file or using the —w/——whole—file command line flag.

Using an own |/0 API instead of Java's File objects

In previous versions, arara's rules relied on Java's File API. That was bad for
several reasons. Most importantly, we have switched to Java's Path API quite
a while ago. Hence, what was used internally and what users accessed di-
verged.

With our general refactoring, there has been a change of strategies: we now
avoid exposing any Java-specific API. The new APl which you have access to
when using the toFile("some file.txt") method exposes the following
properties and methods:

- The properties isAbsolute, fileName, fileSize, lastModified,
parent, exists, isDirectory, and isRegularFile do what their
names indicate.

- The method startswWith(File) checks if the string representation of
the one file is prefix of the other one's.

-normalize() turns a path into an absolute path and normalizes it.

-resolve(String

- resolveSibling(String | File) resolves a sibling.

File) resolves a child.

- readlLines() reads the file's content into a List<String>.
- readText () reads the file's content into a continuous String.

Important changes in version 7

-writeText(String, append? = false) writes the argument to
the file; the optional argument allows appending instead of overwrit-

ing.

If you use the toFile method in your rules, you do not need to change any-
thing. All the arara-internal methods like exists(File) have been adjusted
to accept objects of the new format. In the end, the only need to change any-
thing is in rules where you have accessed Java's File API yourself.

Add projects
arara now supports projects. See PROJECTS for further information on this new
feature.

This section pretty much covered the basics of the changes to this version. Of course, it is highly
advisable to make use of the new features available in arara 7.0 for achieving better results. If
you need any help, please do not hesitate to contact us. See INTRODUCTION for more details on
how to get help.

If you are upgrading you may also be interested in reading our CHANGELOG or the announce-
ment blog post of this release in the NEWS SECTION ON OUR WEBSITE.

Important changes in version 7 29

https://gitlab.com/islandoftex/arara/-/blob/master/CHANGELOG.md
https://islandoftex.gitlab.io/arara/news/

arara is a command line tool. It can be used in a plethora of command interpreter implementa-
tions, from bash to a Windows prompt, provided that the Java runtime environment is accessi-
ble within the current session. This chapter covers the user interface design, as well as options
(also known as flags or switches) that modify the underlying application behaviour.

User interface design

The goal of a user interface design is to make the interaction as simple and efficient as possi-
ble. Good user interface design facilitates finishing the task at hand without drawing unneces-
sary attention to itself. We redesigned the interface in order to look more pleasant to the eye,
after all, we work with TeX and friends:

/2NN VAN A
G o I Y A G o B B R G
|\ [B VR B e

Processing 'doch.tex' (size: 285 B, last modified: 03/01/2020
19:25:40), please wait.

(PDFLaTex) PDFLaTeX engine SUCCESS
(BibTexX) The BibTeX reference management software SUCCESS
(PDFLaTex) PDFLaTeX engineo, SUCCESS
(PDFLaTex) PDFLaTeX enginec..c.iiiuiainnnon.. SUCCESS

Total: 1.14 seconds

First of all, we have the nice application logo, displayed using ASCII art. The entire layout is
based on monospaced font spacing, usually used in terminal prompts. Hopefully you follow the
conventional use of a monospaced font in your terminal, otherwise the visual effect will not be
so pleasant. First and foremost, arara displays details about the file being processed, including
size and modification status:

User interface design 30

Processing 'doch.tex' (size: 285 B, last modified: 03/01/2020
19:25:40), please wait.

The list of tasks was also redesigned to be fully justified, and each entry displays both task and
subtask names (the former being displayed enclosed in parentheses), besides of course the
usual execution result:

(PDFLaTex) PDFLaTeX engine SUCCESS
(BibTexX) The BibTeX reference management software SUCCESS
(PDFLaTex) PDFLaTeX engineiiiiiiinion. .. SUCCESS
(PDFLaTex) PDFLaTeX engine, SUCCESS

As previously mentioned in IMPORTANT CONCEPTS, if a task fails, arara will halt the entire execu-
tion at once and immediately report back to the user. This is an example of how a failed task
looks like:

(PDFLaTex) PDFLaTeX enginet ... FAILURE

Also, observe that our tool displays the execution time before terminating, in seconds. The exe-
cution time has a very simple precision, as it is meant to be easily readable, and should not be
considered for command profiling.

Total: 1.14 seconds

The tool has two execution modes: silent, which is the default, and verbose, which prints as
much information about tasks as possible. When in silent mode, arara will simply display the
task and subtask names, as well as the execution result. Nothing more is added to the output.
For instance:

(BibTexX) The BibTeX reference management software SUCCESS

When executed in verbose mode, arara will display the underlying system command output as
well, when applied. In version 4.0 of our tool, this mode was also entirely redesigned in order to
avoid unnecessary clutter, so it would be easier to spot each task. For instance:

This is BibTeX, Version 0.99d (TeX Live 2020)
The top-level auxiliary file: doch.aux

User interface design 31

The style file: plain.bst
Database file #1: mybib.bib

——— SUCCESS
It is important to observe that, when in verbose mode, arara can offer proper interaction if the

system command requires user intervention. However, when in silent mode, the tool will simply
discard this requirement and the command will almost surely fail.

Options

In order to run arara on your TeX file, the simplest possible way is to provide the file name to
the tool in your favourite command interpreter session, provided that the file has at least one
directive:

$ arara docé6.tex

From version 5.0 on, arara may receive more than one file as parameter. It will compile them se-
quentially (starting with the leftmost). The process fails on the first failure of these executions.
For the files to be flawlessly compiled by TeX, they should be in the same working directory. If
you process your files with other tools, this requirement could be lifted.

$ arara doc20.tex doc2l.tex

/2N A A
GG
VRN D [N P e

Processing 'doc20.tex' (size: 28 B, last modified: 02/28/2020
07:15:02), please wait.

(PDFTeX) PDFTeX enginec.'iiniinaan.. SUCCESS

Processing 'doc2l.tex' (size: 28 B, last modified: 02/28/2020
07:15:10), please wait.

(PDFTeX) PDFTeX engine SUCCESS

Total: 1.20 seconds

Options 32

The tool has a set of command line options (also known as flags or switches) that modify the
underlying execution behaviour or enhance the execution workflow. If you do not provide any
parameters, arara will display the tool usage and the available options:

$ arara
Usage: arara [OPTIONS] file...

/2N B A
b bl
VPR D VRN 0

The cool TeX automation tool.
arara executes the TeX workflow you tell it to execute. Simply specify your

needs within your TeX file and let arara do the work. These directives
feature conditional execution and parameter expansion.

Options:

-1, ——log Generate a log output

-v, ——verbose / -s, —--silent Print the command output

-n, ——dry-run Go through all the motions of running a
command, but with no actual calls

-S, —--safe-run Run in safe mode and disable potentially
harmful features. Make sure your projects
uses only allowed features.

-w, ——whole—file Extract directives in the file, not only in
the header

-p, ——preamble TEXT Set the file preamble based on the
configuration file

-t, ——timeout INT Set the execution timeout (in milliseconds)

-L, —--language TEXT Set the application language

-m, ——max-Lloops INT Set the maximum number of loops (> 0)

-d, ——working-directory PATH Set the working directory for all tools

-P, ——call-property VALUE Pass parameters to the application to be

used within the session.
—-—generate-completion [bash|zsh|fish]

Generate a completion script for arara. Add

'source <(arara -—generate-completion

<shell>)' to your shell's init file.

-V, —--version Show the version and exit
-h, —-help Show this message and exit
Arguments:

file The file(s) to evaluate and process

The available options for our tool are detailed as follows. Each option contains short and long
variations, which are denoted by —o0 and ——option in the command line, respectively. Addition-

Options 33

ally, when a parameter is required by the current option, it will be denoted by parameter in
the description.

- —h / —=help: As the name indicates, this option prints the help message containing the

tool usage and the list of all available options. The tool exits afterwards. When running
arara without any options or a file to be processed, this is the default behaviour. This op-
tion has the highest priority over the others.

- —w / ——whole—file: This option changes the mechanics of how arara extracts the direc-

tives from the code. The tool always reads from the beginning of the file until it reaches a
line that is not empty and it is not a comment. However, by activating this switch, arara
will extract all directives from the entire file (hence the option name). Consider the fol-
lowing example:

% arara: pdftex
Hello world.
\bye

% arara: pdftex
When running arara without this option, one directive will be extracted (line 1). However,

with —w enabled, the directives in lines 1 and 5 will be extracted. This option can also be
disabled by default in the configuration file.

- =1/ ——1og: This option enables the logging feature of our tool. All streams from all sys-

tem commands will be logged and, at the end of the execution, a consolidated log file
named arara.log will be generated. This option can also be activated by default in the
configuration file. Refer to LOGGING for more details on the logging feature.

- - / —=language: This option sets the language of the current execution of arara ac-

Options

cording to the language code identified by the code value provided as the parameter. The
language code tries to follow the IETF BCP 47 norm, standardized nomenclature used to
classify languages. For example, this is our tool speaking Dutch:

$ arara -L nl doch.tex

2 A A
G O B A G O N A e
| [VR B S

Verwerken van 'doch.tex' (grootte: 285 B, laatst gewijzigd:
03/01/2020 19:25:40), een ogenblik geduld.

(PDFLaTex) PDFLaTeX engine SUCCESVOL
(BibTeX) The BibTeX reference management software SUCCESVOL
(PDFLaTex) PDFLaTeX engine SUCCESVOL

34

(PDFLaTex) PDFLaTeX engine oo, .. SUCCESVOL

Totaal: 1,07 seconden

Navis volitans mihi anguillis plena est

At time of writing, arara is able to speak English, German, Dutch, Italian
and Brazilian Portuguese out of the box. There is also a special dialect
named Broad Norfolk, spoken by those living in the county of Norfolk
in England.

Available languages: en for English, de for German, en—QN for Broad
Norfolk, it for Italian, nl for Dutch, and pt-BR for Portuguese (BR).

Would you like to make arara speak your own language? Splendid! We
would love to have you in the team! Just send us an electronic mail,
join our DEDICATED CHATROOM Or OPEN AN ISSUE about it. The localization
process is quite straightforward, we can help you. Any language is wel-
come!

This option can also be specified in the configuration file. However, one can always over-
ride this setting by running the tool with an explicit —L option.

Invalid language codes

From version 6.0 on, if you pass an invalid language code, arara will
now run in English and issue a log warning but not fail anymore. Failing
due to the wrong language in the output was considered inappropriate.

-—-m / max-loops <number>: As a means to avoid infinite iterations, arara has a prede-
fined maximum number of loops, with the default set to 10, as a technical solution. For
instance, consider the following directive:

% arara: pdftex while true

The ——max—TLloops option is used to redefine the maximum number of loops our tool will
allow for potentially infinite iterations. Any positive integer can be used as the <number>
value for this option. An execution of the previous directive with a lower maximum num-
ber of loops is shown as follows:

$ arara -m 2 doc8.tex

Options 35

https://matrix.to/#/!HfEWIEvFtDplCLSQvz:matrix.org?via=matrix.org
https://gitlab.com/islandoftex/arara/issues

/2N VAN A
G G e
|\ D NP (I

Processing 'doc8.tex' (size: 45 B, last modified: 05/29/2018
12:32:14), please wait.

(PDFTex) PDFTeX engine, SUCCESS
(PDFTex) PDFTeX engine SUCCESS

Total: 0.58 seconds

This option can also be specified in the configuration file. However, one can always over-
ride this setting by running the tool with an explicit -m option.

- —n / ——=dry-run: This option makes arara go through all the motions of running tasks

Options

and subtasks, but with no actual calls. It is a very useful feature for testing the sequence
of underlying system commands to be performed on a file. For instance, consider the fol-
lowing execution:

$ arara —n doch.tex

G G O B G
|\ [N B e

Processing "doch.tex" (size: 360 B, last modified: 12/28/2020
13:03:32), please wait.

[DR] (PDFLaTeX) PDFLaTeX engine

Author: Island of TeX
About to run: [pdflatex, doc5.tex] @ /home/islandoftex/Downloads

[DR] (BibTeX) The BibTeX reference management software

Author: Island of TeX
About to run: [bibtex, doc5] @ /home/islandoftex/Downloads

[DR] (PDFLaTeX) PDFLaTeX engine

Author: Island of TeX
About to run: [pdflatex, doc5.tex] @ /home/islandoftex/Downloads

[DR] (PDFLaTeX) PDFLaTeX engine

Author: Island of TeX
About to run: [pdflatex, doc5.tex] @ /home/islandoftex/Downloads

36

Total: 0.18 seconds

Note that the rule authors are displayed (so they can be blamed in case anything goes
wrong), as well as the system command to be executed. It is an interesting approach to
see everything that will happen to your document and in which order.

Conditionals and boolean values
It is very important to observe that conditionals are not evaluated
when our tool is executed in the ——dry—-run mode, although they are
properly listed. Also, when a rule returns a boolean value, the code is
executed regardless of this mode.

- p / ——preamble <name>: Some TeX documents require the same automation steps, e.g, a

Options

set of articles. To this end, so as to avoid repeating the same preamble over and over in
this specific scenario, arara has the possibility of setting predefined preambles in a spe-
cial section of the configuration file identified by a unique key for later use. This com-
mand line option prepends the predefined preamble referenced by the <name> key to
the current document and then proceeds to extract directives, as usual. For instance:

twopdftex: |
% arara. pdftex
% arara: pdftex

Hello world.
\bye

In this example, we have a preamble named twopdftex and a TeX file named doc9. tex
with no directives. Of course, our tool will complain about missing directives, unless we
deliberately inject the two directives from the predefined preamble into the current exe-
cution:

$ arara -p twopdftex doc9.tex
S
G G O O O
VRS [R G) I

Processing 'doc9.tex' (size: 18 B, last modified: 05/29/2018
14:39:21), please wait.

(PDFTeX) PDFTeX engine, SUCCESS

37

(PDFTeX) PDFTeX enginet SUCCESS
Total: 0.96 seconds
It is important to note that this is just a directive-based preamble and nothing else, so a

line other than a directive is discarded. Line breaks and conditionals are supported. Try-
ing to exploit this area for other purposes will not work.

- —t /| ——timeout <number>: This option sets an execution timeout for every task, in mil-

Options

liseconds. If the timeout is reached before the task ends, arara will kill it and halt the ex-
ecution. Any positive integer can be used as the <number> value for this option. Of
course, use a sensible value to allow proper time for a task to be executed. For instance,
consider the following recursive call:

% arara. pdftex
\def\foo{\foo}

This will go \foo forever.
\bye

$ arara ——timeout 3000 doc9.tex

/2NN VAN A
G O I O G B A R
|\ [N B e

Processing 'docl0O.tex' (size: 63 B, last modified: 05/29/2018
15:204:06), please wait.

(PDFTeX) PDFTeX engine ..., FRROR

The system command execution reached the provided timeout value
and was aborted. If the time was way too short, make sure to
provide a longer value. There are more details available on this
exception:

DETATLS mmmmm oo
Timed out waiting for java.lang.UNIXProcess@6b53e23f to finish,
timeout: 3000 milliseconds, executed command [pdftex, doclO.tex]

Total: 3.37 seconds

If left unattended, this particular execution would never finish (and probably crash the
engine at a certain point), as expected by the recursive calls without a proper fixed point.
The ——timeout option was set at 3000 milliseconds and the task was aborted when the
time limit was reached. Note that the tool raised an error about it.

38

-d / ——working-directory <path> This option allows you to change the working direc-

tory to <path>. That is, the commands will run from a different directory than the direc-
tory you launched arara in. This is especially useful when calling a TeX engine as they re-
solve files against the working direcotry. For that reason, arara will also resolve each file
you pass to it that has no absolute path against the working directory. The working direc-
tory is fixed for the whole call; passing multiple files to arara will resolve all of them
against and execute all actions within that one working directory.

- -V |/ ——version: This option, as the name indicates, prints the current version. It also

prints the current revision and a list of libraries with their corresponding licenses. Finally,
it simply exits the application. Note that this option has the second highest priority over
the others.

--v | ——verbose: This option enables the verbose mode of arara. It also enables all

streams to be flushed directly to the terminal, including potential user input interactions
(the exact opposite of silent mode). This option can also be activated by default in the
configuration file.

- —s | ——silent: This option disables the verbose mode of arara (thus activating the de-

fault silent mode), if previously enabled by a proper configuration file (see CONFIGURATION
FILE). It is important to note that this command line option has higher priority over the ——
verbose counterpart.

- =S | ——safe-run: This option enables the safe mode of arara, protecting the system by

disallowing certain user actions. Currently, the following features are restricted:
o File lookup will only perform explicit file resolution. Wildcard filters are disabled.

o ¢ unsafelyExecuteSystemCommand will raise an exception and abort the run.
Keep in mind that rules are still allowed to construct arbitrary commands using
Command objects, so this restriction only disallows arbitrary system commands that
would not get logged and are thus invisible to the user.

o The ——options parameter does